V• T• E	Electronegativity using the Allen scale																	
Group →	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
↓ Period																		
1	Н																	He
	2.300																	4.160
2	Li	Be											В	С	N	0	F	Ne
	0.912	1.576											2.051	2.544	3.066	3.610	4.193	4.789
3	Na	Mg											Al	Si	Р	S	CI	Ar
	0.869	1.293											1.613	1.916	2.253	2.589	2.869	3.242
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	0.734	1.034	1.19	1.38	1.53	1.65	1.75	1.80	1.84	1.88	1.85	1.59	1.756	1.994	2.211	2.434	2.685	2.966
5	Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	-1	Xe
	0.706	0.963	1.12	1.32	1.41	1.47	1.51	1.54	1.56	1.59	1.87	1.52	1.656	1.824	1.984	2.158	2.359	2.582
6	Cs	Ва	Lu	Hf	Ta	W	Re	Os	lr .	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	0.659	0.881	1.09	1.16	1.34	1.47	1.60	1.65	1.68	1.72	1.92	1.76	1.789	1.854	2.01	2.19	2.39	2.60
7	Fr	Ra																
	0.67	0.89																
See also: Electronegativities of the elements (data page)																		

Packing Possibilities Assuming Anion is Larger Than Cation^a

Coordination Number (max)

anion's lattice	cation's hole	cation	anion	$r_{\rm cation}/r_{\rm anion}$	base stoichiometry ^b	other stoichiometries ^c
simple cubic	cubic	8	8	0.732 - 0.999	1:1	1:2, 1:4
face- centered	octahedral	6	6	0.414 - 0.732	1:1	1:2, 2:3, 1:3
face- centered	tetrahedral	4	8	0.225 - 0.414	2:1	1:1, 1:2, 3:2

^a when cations are larger than anions, simply reverse their roles in the table

b ratio is cation:anion assuming all holes are filled

c assuming that some fraction of the holes remain unfilled