Take-Home Assignment 02

Bohr's model for the hydrogen atom predicts that the wavelength of the photon emitted when an electron moves from an initial shell, n_i , to a final shell, n_f , is

$$\frac{1}{\lambda} = R \times \left\{ \frac{1}{n_f^2} - \frac{1}{n_i^2} \right\}$$

where n_f is less than n_i , and where R has a value of $1.09737 \times 10^7 \text{ m}^{-1}$. We can extend this equation to any one-electron ion, such as He⁺ or Li²⁺, if we account for the charge on ion's nucleus, Z

$$\frac{1}{\lambda} = R \times Z^2 \times \left\{ \frac{1}{n_f^2} - \frac{1}{n_i^2} \right\}$$

What is the wavelength, in nanometers, of the photon that is emitted when the single electron in an ion of helium with a charge of +1 moves from the $n_i = 9$ shell to the $n_f = 8$ shell? What is the frequency of this photon in s⁻¹ and its energy in J and in kJ/mol?

Solution

Plugging in 2 for the charge on the nucleus (note that Z is the charge on the nucleus, which is equal to the atomic number, not the charge of the ion), 9 for the initial shell, and 8 for the final shell gives the wavelength as 6947.09 nm. To calculate the frequency, we note that $c = \lambda \nu$ where c is the speed of light (2.998 × 10⁸ m/s); thus, we obtain a frequency of $4.32e+13 \text{ s}^{-1}$. To calculate the energy in Joules, we note that $E = h\nu$ where h is Planck's cosntant ($6.626 \times 10^{-34} \text{ Js}$), or 2.86e-20 J. To convert to an energy in kJ/mol, we multiply by Avogadro's number ($6.022 \times 10^{23} \text{ mol}^{-1}$) and divide by 1000 to convert J to kJ; thus, the energy is 17.2 kJ/mol.