Timeline of Events in Chapters 5-8 of Uncertainty

Year	Event
1885	Balmer derives an empirical equation that models the known visible emission lines for hydrogen atoms.
1892	Michelson observes that some of the Balmer lines for hydrogen are actually doublets.
1897	Thomson discovers the electron.
1900	Planck suggests that black-body emission—energy released from a hot object—occurs in discrete pack- ets, or <i>quanta</i> , that cannot be further subdivided.
1904	Thomson proposes the "plum pudding" model of the atom, in which electrons sit within a "soup" of positive charge.
1905	Einstein develops a theoretical model to explain the photoelectric effect using Planck's quantum.
1911	Rutherford demonstrates that an atom's positive charge is confined to a small, dense nucleus at center of atom; his model does not address the electron.
1913	Bohr introduces his model of the hydrogen atom in which a single electron orbits a nucleus, and in which orbits are quantized.
1914	Bohr speculates that the existence of elliptical orbits and general relativity might explain the doublets observed in the hydrogen atom spectrum.
1916	Milliken's experiments confirm Einstein's theoretical explanation of the photoelectric effect.
1920	Bohr and Sommerfeld propose theoretical model of the atom that allows for elliptical orbits of elec- trons around the nucleus; the model is based on three integer quantum numbers that describe size, elasticity, and orientation of these orbits.
1920	Sommerfeld introduces a fourth quantum number to explain the anomalous Zeeman effect. Heisenberg subsequently develops theory that requires that this quantum number take on values that are odd multiples of $\frac{1}{2}$.
1920	Bohr establishes his correspondence principle stating that the results of quantum mechanics should agree with classical mechanics in the limit of large quantum numbers.
1922	Compton shows that the scattering of X-rays by electrons is a quantum event in which light behaves as a particle.
1924	Bohr, Kramers, and Slater (BKS) propose a model for the interaction of light with atoms in which the atom behaves as a virtual oscillator allowing for interaction with light as a wave. Because the model is probabilistic, it does not require conservation of energy in individual collisions.
1925	Further experiments by Compton show that individual collisions between X-rays and electrons elastic and conserve energy, disproving the BKS model.