
Solving Equilibrium Problems
The secret to solving an equilibrium problem is organization (and patience. . . patience always helps!). Most
equilibrium problems begin by providing us with the initial amount of each reactant and each product, and
providing us with either the concentration or the change in concentration for one reactant or for one product.
From this information we can deduce the change in concentration and the final equilibrium concentration
for each species in the equilibrium reaction. As shown in the following examples, a table helps us organize
this information and guides us in writing an algebraic equation that we can solve. Beginning an equilibrium
problem without this organization can turn a relatively easy problem into one that is difficult to solve.

There are two basic approaches to solving an equilibrium problem: a rigorous approach that relies on an exact
algebraic solution to the problem, and a less rigorous approach that uses one or more simplifying assumptions
to approximate closely the result of the more rigorous approach. This essay reviews these approaches and
provides some hints on how to make and how to evaluate simplifying assumptions. The examples included
here are identical to those we discussed in class, which will help you in sorting through your notes.

Rigorous Solutions

Consider the reaction PCl3(g) + Cl2(g) PCl5(g), for which the equilibrium constant is 1000 at an
unspecified temperature. If we know the initial concentration for each reactant and product, then we can
determine if the system is at equilibrium by calculating the reaction quotient, Q, and comparing it to the
equilibrium constant, K. If the system is not at equilibrium, then we can determine the direction in which
the reaction will move to reach equilibrium.

Example 1. The initial concentrations of PCl3, Cl2, and PCl5 in a mixture are, respectively
0.0220 M, 0.00400 M, and 0.0400 M. Determine if the mixture is at equilibrium. If the system is
not at equilibrium, in which direction will it react to establish equilibrium?

Solution. The reaction quotient is

Q = [PCl5]
[PCl3][Cl2]

= 0.0400
(0.0220)(0.004) = 454.4

Because Q < K, the system is not at equilibrium and the reaction will move to the right (from
reactants-to-products) to reach the equilibrium position. As the concentration of PCl5 increases
and the concentrations of PCl3 and Cl2 decrease, the value of Q increases until Q = K and
equilibrium is established.

Having established the direction in which equilibrium lies, we need to determine the concentration of each
reactant and product when equilibrium is reached. Because only one equation—the equilibrium constant
expression—relates the concentrations of our three reactants and products, we must rewrite the equation
so that it includes only a single variable.1 We accomplish this by assigning a variable, such as X, to the
change in concentration for any one component and use the reaction’s stoichiometry to find the change in
concentration for the remaining components in terms of X. A table is a good way to organize our work.

Example 2. Continuing with Example 1, express the equilibrium concentrations for all three
com-ponents using X as the sole variable.

1Recall that a single equation with a single variable has a unique solution, but that a single equation with more than one
variable has an infinite number of possible solutions. Thus, the equation 5x + 2 = −8 has a unique solution (x = −2), but the
equation 5x + y = −8 has many possible solutions (x = −2, y = 2 and x = 0, y = −8 are two examples). Although this is a
trivial point, it is an important point. If you are stuck when solving an equilibrium problem because you find there is more than
one unknown term, then stop and ask yourself whether you do, in fact, know the value for one of the unknown terms. Reread
the problem carefully because the missing information must be there.



Solution. A table helps us organize information as we work though the problem (we begin with
the information shown in bold; all other entries are developed as part of the problem’s solution):

PCl3(g) + Cl2(g) PCl5(g)
initial 0.0220 0.00400 0.0400
change −X −X +X

equilibrium 0.0200−X 0.00400−X 0.0400 + X

The first row of this table, which we call an ICE table (for initial, change, and equilibrium),
provides each reactant’s and each product’s initial concentration. We know from Example 1
that the mixture moves toward its equilibrium position by shifting to the right. Because we do
not know by how much the concentration of any one species changes, we arbitrarily pick one
component and assign it a change of +X if it increases in concentration, or −X if it decreases in
concentration. The change in concentration for each of the remaining components is a multiple of
X that depends on the reaction’s stoichiometry. Although we can assign X to any reactant or
product, a judicious choice at this point makes the problem easier by avoiding the use of fractions
(such as a change of −X

2 ). For this example, where the stoichiometry is 1:1:1, the assignment is
straightforward. Letting −X be the decrease in concentration for PCl3, we know that the change
in concentration for Cl2 is −X and that for PCl5 is +X.

Having defined each component’s equilibrium concentration in terms of the variable X, we are ready to
solve the problem. In the rigorous approach to solving an equilibrium problem we substitute the equilibrium
concentrations into the equilibrium constant expression and solve for the variable X. In almost all equilibrium
problems, finding a rigorous solution is complicated by the presence of an equation that is a second-order
(quadratic) or a higher-order polynomial equation in the variable X. Although quadratic equations are
relatively easy to solve, higher-order polynomials present a more difficult problem. For now, we will limit
problems to those that are second-order in the variable X.

Example 3. Continuing with Example 2, determine the concentration for each component when
equilibrium is reached. The equilibrium constant for the reaction is 1000.

Solution. We begin by substituting into the equilibrium constant expression the equilibrium
concentrations defined in terms of the variable X (the last row of the ICE table in Example 2);
thus

K = [PCl5]
[PCl3][Cl2]

= 0.0400 + X

(0.0220−X)(0.00400−X) = 1000

Next, we manipulate the equation until it is in the general form of a second-order polynomial
equation (i.e., aX2 + bX + c = 0)

1000 = 0.0400 + X

8.8× 10−5 − 0.026X + X2

0.0400 + X = 0.088− 26X + 1000X2

1000X2 − 27X + 0.048 = 0

The solutions (or roots) for a second-order polynomial are given by the quadratic equation

X = −b±
√

b2 − 4ac

2a



There are two solutions to a second-order polynomial equation, only one of which has chemical
significance; the other solution must, therefore, lead to a chemically meaningless result. Continuing,
we find that

X =
−(−27)±

√
(−27)2 − (4)(1000)(0.048)

(2)(1000) = 27± 23.173
2000 = 0.0251 or 0.00191

Of these two results, only one is correct. A value for X of 0.0251 leads to a contradiction as it
gives a negative concentration for both reactants; thus, the correct value for X is 0.00191.2 The
equilibrium concentrations for the three components are

[PCl3] = [PCl3]o −X = 0.0220− 0.00191 = 0.0201 M

[Cl2] = [Cl2]o −X = 0.0220− 0.00191 = 0.0201 M

[PCl5] = [PCl5]o + X = 0.0400 + 0.00191 = 0.0419 M

Although algebraically intensive, this approach always leads to the correct answer (although if b2 ≈ 4ac, then
rounding errors may leave you with a negative value under the square root). Many scientific calculators have
built in subroutines that will find the roots of any polynomial equation, including those with orders greater
than two. Additionally, with a graphing calculator you can plot the function and find the roots by looking for
the x-intercepts. These latter two approaches, however, do not always lead to useful answers and, therefore,
you must use them with caution.3

Approximate Solutions

An alternative approach to solving an equilibrium problem is to find a way to simplify a second-order (or a
higher-order) polynomial equation into one that is first-order in the variable X, an equation that is easy to
solve. This is possible if we can make a simplifying assumption that introduces no more than a small error
into the calculation. An error of less than ±5% generally is considered acceptable due to the uncertainty in
published equilibrium constants.

A simplifying assumption is possible if there is at least one term in which the variable X is added to or
subtracted from a number. If the value of X is significantly smaller than the number to which it is added or
subtracted, then we can safely ignore it; if not, then it is retained. For example, consider this equilibrium
constant expression from Example 3

K = [PCl5]
[PCl3][Cl2]

= 0.0400 + X

(0.0220−X)(0.00440−X) = 1000

which has three terms in which the X is added to or subtracted from a number. If X is significantly smaller
than 0.0400 and 0.0220 but larger than 0.00400, then the first term in the denominator simplifies to 0.0220
and the numerator simplifies to 0.0400 without, we hope, introducing any significant error; thus

K = [PCl5]
[PCl3][Cl2]

= 0.0400
(0.0220)(0.00440−X) = 1000

2For example, if X is 0.0251 then the concentration of PCl3 is 0.0220 − 0.0251 = −0.0031. A negative concentration is
impossible.

3The limitations here are the calculator’s precision, which can lead to calculated concentrations of zero, when X is very large
or very small, and to the resolution of the calculator’s display.



This equation is now first-order in X and, therefore, easy to solve.

How do we know if a simplifying assumption is reasonable? The short answer is that we cannot be sure
without testing the assumption, but we can make an educated guess if we evaluate carefully the values for Q
and K. If Q ≈ K, then we are close to equilibrium and the change in concentration (X) needed to reach
equilibrium is small. On the other hand, if the difference between Q and K is large, then the changes in
concentration as the system moves toward equilibrium likely are significant.

Example 4. Evaluate the equilibrium constant expression from Example 3 (shown below) and
decide whether the value of X is likely to be insignificant for any of the three terms in the
equilibrium constant expression.

K = [PCl5]
[PCl3][Cl2]

= 0.0400 + X

(0.0220−X)(0.00440−X) = 1000

Solution. In Example 1 we showed that the value of Q for this system’s initial conditions is
454.5 compared to an equilibrium constant, K, of 1000. Because this difference is quite large we
reasonably can assume that X is relatively large and that we probably cannot exclude it from
any of the three terms.

The fact that we cannot make a simplifying assumption at this point does not mean we should give up
searching for a way to simplify the problem. If the equilibrium constant for a reaction is quite large, then we
might treat the reaction as one that first goes to completion and then moves back to its equilibrium position.4

Example 5. Return to Example 2, allow the reaction to go to completion, and report the new
set of initial concentrations.

Solution. We begin by using a table to organize information (as before, the values in bold are
the initial information):

PCl3(g) + Cl2(g) PCl5(g)
initial 0.0220 0.00400 0.0400
change −0.00400 −0.00400 +0.00400

new initial 0.0180 0 0.0440

The first row, of course, provides the initial concentrations of the reactants and products. The
changes in concentration shown in the second row assume that the reaction goes to completion.
The limiting reagent is Cl2, so we let its concentration change to zero and assign the determine
the change in concentration for each remaining component using the reaction’s stoichiometry.

Having made this adjustment, we let the reaction move back to its equilibrium position using the variable X
to define the extent of that movement.

Example 6. Continue with Example 5 by expressing the equilibrium concentration for each
species in terms of a single variable, X, and solve for X.

Solution. Continuing with our table as a means for organizing information, we have

PCl3(g) + Cl2(g) PCl5(g)
initial 0.0220 0.00400 0.0400
change −0.00400 −0.00400 +0.00400

new initial 0.0180 0 0.0440
change +X +X −X

equilibrium 0.0180 + X X 0.0440−X

4In essence, the composition of the system at equilibrium is independent of the path the system takes to reach equilibrium.



and an equilibrium constant expression of

K = [PCl5]
[PCl3][Cl2]

= 0.0440−X

(0.0180 + X)(X) = 1000

If, as in our example, the equilibrium constant in the forward direction is 1000, then the equilibrium
constant in the reverse direction is 0.001. With such a small value, we can reasonably expect that
equilibrium is reached with only a very small change in the concentrations of all three species. If
true, then we can remove the term X from the numerator and the first term in the denominator by
assuming that 0.0440−X ≈ 0.0440 and that 0.0180 + X ≈ 0.180. Having made these assumptions
we find that

K = [PCL5]
[PCl3][Cl2]

= 0.0440
(0.0180)(X) = 1000

X = 2.44× 10−3 M

Notice how much easier the calculation is! Based on these results, we find that the equilibrium
concentrations are:

[PCl3] = 0.0180 + X = 0.0180 + 2.44× 10−3 = 0.0204 M

[Cl2] = X = 2.44× 10−3 M

[PCl5] = 0.0440−X = 0.0440− 2.44× 10−3 = 0.0416 M

Of course, when we make an assumption we introduce errors into our concentrations so we must evaluate
whether these errors are acceptable. To determine the error in any concentration, we compare the calculated
concentration at equilibrium to our assumption in making the calculation, with the error equal to

% error = assumed concentration− calculated concentration
assumed concentration × 100

If the error for any one concentration is more than 5%, then our assumption is not valid and we need to find
an alternative approach to solving the problem.

Example 7. Continuing with Example 6, determine the percent errors and determine if the
assumptions are acceptable.

Solution. The percent errors are:

% error for PCl5 = 0.0440− (0.0440− 2.44× 10−3)
0.0440 = 0.0440− 0.0416

0.0440 × 100 = 5.5%

% error for PCl3 = (0.0180− (0.0180 + 2.44× 10−3))
0.0180 = 0.0180− 0.0204

0.0180 × 100 = −13.3%

Both errors are too large; thus, our assumptions were not valid.



So, what do we do if our simplifying assumptions fail? One possibility, of course, is to return to the rigorous
approach and solve the problem exactly. Another possibility, which often is the better choice, is to continue
making approximations. We know, for example, that our initial assumption of 0.0440 M for the equilibrium
concentration of PCl5 was too high and that its original concentration of 0.0400 M is too low. Clearly the
equilibrium concentration must lie between these limits and our calculated result from Example 7 of 0.0416
M is as good a choice as any.

Example 8. Continue with Example 7, making a new set of simplifying assumptions based upon
the results of the first set of assumptions.

Solution. This time we assume that the calculated equilibrium concentrations for PCl3 and for
PCl5 from Example 7 are better estimates of their respective equilibrium concentrations than our
initial assumptions; thus, for our second iteration we assume equilibrium concentrations of

[PCl5] = 0.0440−X ≈ 0.0416 M

[PCl3] = 0.0180 + X ≈ 0.0204 M

Continuing, we find that

K = [PCl5]
[PCl3][Cl2]

= 0.0416
(0.0204)(X) = 1000

X = 2.04× 10−3 M

For PCl5, the equilibrium concentration and error are

0.0440−X = 0.0444− 2.04× 10−3 = 0.0420 M

% error = 0.0416− 0.0420
0.0416 × 100 = −1.0%

and for PCl3, the equilibrium concentration and error are

0.0180 + X = 0.0180 + 2.04× 10−3 = 0.0200 M

% error = 0.0204− 0.0200
0.0204 × 100 = +2.0%

These are reasonable errors!5 Comparing the exact concentrations from the rigorous solution to
those from this approximate solutions, we find

[PCl3] = 0.0201 M vs. 0.0200 M

[Cl2] = 0.00209 M vs. 0.00204 M

[PCl5] = 0.0419 M vs. 0.0420 M

5Note that for this second assumption the percent errors for both species are smaller in magnitude and opposite in sign
than for the first assumption. This is a general pattern. With each iteration we switch back-and-fort from overestimating to
underestimating the equilibrium concentration, but come closer-and-closer to the actual concentrations.
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