Enthalphy of Atom Combination

Here is a small table giving the enthalpy of atom combination values for several elements and molecules. Use these values to answer the questions below the table.

substance	$\Delta H^o_{ac}~(\rm kJ/mol_{rxn})$	substance	$\Delta H_{ac}^o \; (\rm kJ/mol_{rxn})$
$\overline{\mathrm{H}(g)}$	0	$N_2(g)$	-945.408
C(g)	0	$O_2(g)$	-498.340
N(g)	0	$CH_4(g)$	-1662.09
O(g)	0	$\mathrm{CO}_2(g)$	-1608.531
C(s, graphite)	-716.682	$H_2O(g)$	-926.29
C(s, diamond)	-714.787	$H_2O(l)$	-970.30
$\mathrm{H}^{+}(aq)$	-217.65	$NH_3(g)$	-1171.76
$\mathrm{OH}^{-}(aq)$	-696.81	$NO_2(g)$	-937.86
$\mathrm{H}_{2}(g)$	-435.30	$N_2O_4(g)$	-1932.93

Why is ΔH_{ac}^o for C(g) equal to 0 mol_{rxn}?

There are no bonds to form and, therefore, there is no enthalpy for atom combination.

Why are values of ΔH_{ac}^{o} for the molecules negative? Is a positive value possible?

Because the formation of a bond always releases energy relative to the free atoms, the enthalpy of atom combination for a molecule always is negative.

Do the relative ΔH_{ac}^{o} values for $N_2(g)$ and $O_2(g)$ make sense?

Of course. A molecule of N_2 has a triple bond and a molecule of O_2 has a double bond. We can reasonably expect that it takes more energy to break a triple bond than it does a double bond; thus, the amount of energy released on forming N_2 is greater than that when forming O_2 .

What is ΔH^o if one mole of $CH_4(q)$ is broken apart into atoms and then reformed?

The overall change in enthalpy is zero because the energy needed to break the bonds is recovered when the bonds reform.

What is ΔH_{ac}^{o} if we make two moles of $NH_{3}(g)$ from N(g) and H(g)?

Since each mole of NH_3 releases 1171.76 kJ of energy, the enthalpy change for making two moles of NH_3 is -2353.52 kJ.

Which has stronger bonds: C_{graphite} or C_{diamond}?

Graphite(!). As shown be its more negative enthalpy of atom combination, the C–C bonds in graphite are stronger than those in diamond.