
Key for Chem 351: Midterm Exam
To begin, let’s load and source data files, scripts, and packages that we will use in this answer key.
# loading and sourcing data files and scripts and packages
load("tin.RData")
load("uranium.RData")
load("instruments.RData")
load("AMF1.RData")
source("shadeArea.R")
library(alr3)

## Loading required package: car

## Warning: package 'car' was built under R version 3.2.5

Problem One

Part (a)

The mean, median, standard deviation, and MAD are shown below; note that we need to include the argument
constant = 1 to obtain the MAD value as we defined it in class.
mean(tin)

## [1] 256.4416
median(tin)

## [1] 255.5
sd(tin)

## [1] 64.35412
mad(tin, constant = 1)

## [1] 23

The mean and the median are similar in value, which suggests that the distribution of data is reasonably
symmetrical about its central value; if this was not the case, then we would expect to see a clear difference
between the two because the mean is more sensitive than the median to skewed data. Because the standard
deviation is more sensitive to extreme values than is the MAD, the difference in these values suggests that
there are extreme values in the data. Together, these four values suggest that the distribution of results is
reasonably symmetrical with extreme values at both ends of the distribution.

Part (b)

A box plot of the full data set, which is shown in Figure 1, indicates that the four labs reporting the smallest
values (76.5 ppm, 114 ppm, 155 ppm, and 185 ppm) and the two labs reporting the largest values (395 ppm
and 522.09 ppm) are outliers.
boxplot(tin, horizontal = TRUE)

Removing these six labs from the data set and recalculating the summary statistics (results reported below)
suggests that the reduced data set has a distribution that is symmetrical around its center, as the mean and
the median are similar, and that it is less affected by extreme values, as the standard deviation and the MAD
are now closer to each other in value. When we wish to characterize an analytical method’s accuracy and
precision across a large number of laboratories, we need to ensure that their work reflects variation across the
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Figure 1: Box plot for the data in problem 1.

same set of determinate errors as differences in systematic errors between the labs will widen the distribution
and overestimate the method’s standard deviation.
tin.new = tin[-c(1:4, 45, 46)]
mean(tin.new)

## [1] 258.7181
median(tin.new)

## [1] 258
sd(tin.new)

## [1] 26.9509
mad(tin.new, constant = 1)

## [1] 15.895

Part (c)

To find the probability we use the “pnorm” command and use the mean and the standard deviation for the
reduced data set to define the normal distribution. We also use the lower.tail argument, as needed, to control
the end of the distribution that we need to consider.
m = mean(tin.new)
s = sd(tin.new)
# part (a)
pnorm(240, mean = m, sd = s)

## [1] 0.2436768
# part (b)
pnorm(280, mean = m, sd = s, lower.tail = FALSE)

## [1] 0.2148642
#part(c)
pnorm(260, mean = m, sd = s) - pnorm(240, mean = m, sd = s)
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Figure 2: From left-to-right, areas under the normal distribution curve for scenarios i, ii, and iii.

## [1] 0.2752922

As shown above, we see that 24.4% of results are less than 240 ppm, that 21.5% of results are greater than
280 ppm, and that 27.5% of results are between 240 ppm and 260 ppm. Figure 2 shows the corresponding
areas under the normal distribution curves.
old.par = par(mfrow = c(1, 3))
shadeArea(tin.new, 0, 240)
shadeArea(tin.new, 280, 500)
shadeArea(tin.new, 240, 260)

par(old.par)

Part (d)

The result from ICP-IDMS is described as a “standard value,” which means we take this as the accepted or
theoretical value µ, and use a t-test to evaluate whether there is a significant difference between the mean of
the reduced data set and the accepted value. The null hypothesis is that the mean for the reduced data set is
the same as the accepted value, and the alternative hypothesis is that the two values are not the same; that
is, this is a two-tailed t-test.
t.test(x = tin.new, mu = 286.5, alternative = "two.sided")

##
## One Sample t-test
##
## data: tin.new
## t = -6.5196, df = 39, p-value = 9.85e-08
## alternative hypothesis: true mean is not equal to 286.5
## 95 percent confidence interval:
## 250.0987 267.3374
## sample estimates:
## mean of x
## 258.7181

The p-value from the t-test is less than 0.05; thus, we reject the null hypothesis and accept the alternative
hypothesis that there is a significant difference between the mean of the reduced data set and the accepted
value that we cannot explain by the uncertainty in the measurements.

Part (e)
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Figure 3: Histogram for the reduced set of laboratories showing evidence of three distinct groups

There are a number of ways that we cans show this, two of which are highlighted here. The first approach is
to use a stem-and-leaf plot, using the scale argument to spread out the data. A second approach is to use
a histogram and the breaks option to increase the number of bins (but, this requires care as it is easy to
manipulate the breaks to give us the outcome we desire rather than letting the result emerge from the data
itself). The stem-and-leaf plot is shown here
stem(tin.new, scale = 2)

##
## The decimal point is 1 digit(s) to the right of the |
##
## 19 | 7
## 20 | 3
## 21 | 8
## 22 | 068
## 23 | 3
## 24 | 234467788
## 25 | 1256
## 26 | 03556
## 27 | 224799
## 28 | 00145
## 29 | 06
## 30 |
## 31 | 0
## 32 | 3

and the histogram in Figure 3. Note that both plots suggest we can subdivide the results into three groups,
each in the form of a peak in the distribution: a very small set of results centered at approximately 220 ppm,
a small, but narrowly distributed set of results centered at approximately 240 ppm, and a larger and more
broadly distributed set of results centered at approximately 270 ppm.
hist(tin.new, breaks = 10, main = "")
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Problem Two

To compare the results from the field and from the lab, we use a t-test. More specifically, because each site is
unique and its sample is analyzed both in the field and in the lab, we use a paired t-test. This is critical
because the variation in results between sites (samples) is so large that it likely is larger than the variation
between field and lab, compromising the comparison. The null hypothesis is that the field and the lab give
the same results—that is, the difference between them is zero—and the alternative hypothesis is that their
results are different. Because we have no reason to believe that “degradation of samples” must lead to a
decrease in concentration, we use a two-tailed t-test.
t.test(x = field, y = lab, mu = 0, alternative = "two.sided", paired = TRUE)

##
## Paired t-test
##
## data: field and lab
## t = -1, df = 19, p-value = 0.3299
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -8.351165 2.951165
## sample estimates:
## mean of the differences
## -2.7

With a p-value of 0.3299, we have no evidence at α = 0.05 that we cannot attribute the difference between
the results when run in the field and when run in the lab to uncertainty in the measurements.

Problem Three

To determine if there is a difference in the results obtained by these instruments we use an analysis of variance.
To do so, we first need to place the data into a two-column data frame consisting of a column for results and
column to identify the instrument; note, we do not need the column for days, so we first remove it from the
data frame.
inst = instruments[ , -9]
inst = stack(inst)
head(inst)

## values ind
## 1 9.290 inst1
## 2 8.147 inst1
## 3 7.916 inst1
## 4 8.511 inst1
## 5 15.789 inst1
## 6 9.936 inst1

Now that the data is properly organized, we complete an analysis of variance using the formula values ~ ind.
The null hypothesis is that the variance between the instruments and the variance within the instruments are
equal, and the alternative hypothesis is that the variance between the instruments is significantly larger than
the variance within the instruments.
inst.aov = aov(values ~ ind, data = inst)
summary(inst.aov)

## Df Sum Sq Mean Sq F value Pr(>F)
## ind 7 1818 259.76 75.84 <2e-16 ***
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## Residuals 328 1123 3.43
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

With a p-value of less than 2e-16, we have good evidence that the variance between the instruments is so
large that we cannot attribute it to the uncertainty in the results of each instrument. To consider how we
might divide the instruments into distinct groups, we use the TukeyHSD test.
inst.hsd = TukeyHSD(inst.aov)
inst.hsd

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = values ~ ind, data = inst)
##
## $ind
## diff lwr upr p adj
## inst2-inst1 -0.3551667 -1.58716313 0.8768298 0.9877184
## inst3-inst1 -0.1455476 -1.37754408 1.0864488 0.9999621
## inst4-inst1 1.7147143 0.48271783 2.9467107 0.0007398
## inst5-inst1 -4.4930952 -5.72509170 -3.2610988 0.0000000
## inst6-inst1 -5.1136190 -6.34561551 -3.8816226 0.0000000
## inst7-inst1 -1.9849762 -3.21697265 -0.7529797 0.0000383
## inst8-inst1 -3.9469524 -5.17894884 -2.7149559 0.0000000
## inst3-inst2 0.2096190 -1.02237741 1.4416155 0.9995603
## inst4-inst2 2.0698810 0.83788449 3.3018774 0.0000140
## inst5-inst2 -4.1379286 -5.36992503 -2.9059321 0.0000000
## inst6-inst2 -4.7584524 -5.99044884 -3.5264559 0.0000000
## inst7-inst2 -1.6298095 -2.86180598 -0.3978131 0.0017261
## inst8-inst2 -3.5917857 -4.82378217 -2.3597893 0.0000000
## inst4-inst3 1.8602619 0.62826545 3.0922584 0.0001575
## inst5-inst3 -4.3475476 -5.57954408 -3.1155512 0.0000000
## inst6-inst3 -4.9680714 -6.20006789 -3.7360750 0.0000000
## inst7-inst3 -1.8394286 -3.07142503 -0.6074321 0.0001980
## inst8-inst3 -3.8014048 -5.03340122 -2.5694083 0.0000000
## inst5-inst4 -6.2078095 -7.43980598 -4.9758131 0.0000000
## inst6-inst4 -6.8283333 -8.06032979 -5.5963369 0.0000000
## inst7-inst4 -3.6996905 -4.93168693 -2.4676940 0.0000000
## inst8-inst4 -5.6616667 -6.89366313 -4.4296702 0.0000000
## inst6-inst5 -0.6205238 -1.85252027 0.6114726 0.7871073
## inst7-inst5 2.5081190 1.27612259 3.7401155 0.0000000
## inst8-inst5 0.5461429 -0.68585360 1.7781393 0.8777701
## inst7-inst6 3.1286429 1.89664640 4.3606393 0.0000000
## inst8-inst6 1.1666667 -0.06532979 2.3986631 0.0781691
## inst8-inst7 -1.9619762 -3.19397265 -0.7299797 0.0000500

Although we can examine this graphically, it is easy to interpret the summary results, which show us that
instruments 1–3 seem to have similar results and that instruments 5, 6, and 8 also seem to have similar
results (although the p-value for the difference between instrument 6 and instrument 8 is close to the limit
of 0.05); the remaining two instruments—4 and 7—are significantly different from each other and from the
other instruments.
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Problem Four

Part (a)

To evaluate the model S = β0 + β1C we first construct the model and then examine the model’s summary
report, which is shown below. From the summary report we see that the y-intercept is –210.0 and the slope is
1243 with no evidence to suggest that the y-intercept is significantly different from zero, but strong evidence
that the slope is significantly different from zero.
amf1.lm = lm(signal ~ conc, data = amf1)
summary(amf1.lm)

##
## Call:
## lm(formula = signal ~ conc, data = amf1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -724.37 -238.61 94.23 234.69 579.23
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -209.953 129.322 -1.623 0.119
## conc 1243.498 6.179 201.233 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 385.4 on 22 degrees of freedom
## Multiple R-squared: 0.9995, Adjusted R-squared: 0.9994
## F-statistic: 4.049e+04 on 1 and 22 DF, p-value: < 2.2e-16

The coefficient of determination of 0.9995 shows that there is a strong general relationship between the signal
and the concentration of AMF1 and the small percent relative residual standard error
384.4 * 100/mean(amf1$signal)

## [1] 1.880208

of 1.9% suggests that the model reasonably fits the data (that is, the residual errors are small in size). In
addition, the small p-value for Fexp suggests that the variance explained by the regression is significantly
greater than the variance due to residual error. The calibration curve included with the exam shows nothing
to suggest that the model does not fit the data.

Part (b)

There are at least two approaches we can use here. One is to plot the residuals from the regression model as
a function of the concentrations of AMF1, looking for evidence that of a pattern.
plot(amf1$conc, amf1.lm$residuals, pch = 19, col = "blue",

xlab = "concentration of AMF1", ylab = "residual error")

The pattern in the residual errors, wihch change from positive, to negative, and back to positive as the
concentration increases (see Figure 4), suggests there is curvature in the data that is better explained by,
perhaps, a second-order polynomial. An alternative approach is to take advantage of the replication included
in the original data and examine the regression model for evidence of a lack of fit.
pureErrorAnova(amf1.lm)

## Analysis of Variance Table
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Figure 4: Plot of residual errors for the straight-line model.

##
## Response: signal
## Df Sum Sq Mean Sq F value Pr(>F)
## conc 1 6015219403 6015219403 62865.6775 < 2e-16 ***
## Residuals 22 3267969 148544
## Lack of fit 4 1545662 386416 4.0385 0.01649 *
## Pure Error 18 1722306 95684
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The resulting summary report shows that the lack of fit between the model and the data accounts for
significantly more of the residual error than does the pure error associated with replication.

Part (c)

As we see in the summary below, a second-order polynomial model provides a slightly improved fit, at least
based on the summary statistics (r2, sr, and Fexp), while also providing no evidence of a lack of fit. And, as
we see in Figure 5, there is no clear pattern in the residual errors.
amf1.pm = lm(signal ~ conc + I(conc^2), data = amf1)
summary(amf1.pm)

##
## Call:
## lm(formula = signal ~ conc + I(conc^2), data = amf1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -530.73 -173.74 -43.25 124.93 651.27
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 210.0845 136.8531 1.535 0.139687
## conc 1162.4349 19.3195 60.169 < 2e-16 ***
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Figure 5: Plot of residual errors for the second-order polynomial model.

## I(conc^2) 2.1152 0.4896 4.320 0.000302 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 287 on 21 degrees of freedom
## Multiple R-squared: 0.9997, Adjusted R-squared: 0.9997
## F-statistic: 3.651e+04 on 2 and 21 DF, p-value: < 2.2e-16
pureErrorAnova(amf1.pm)

## Analysis of Variance Table
##
## Response: signal
## Df Sum Sq Mean Sq F value Pr(>F)
## conc 1 6015219403 6015219403 62865.6775 < 2.2e-16 ***
## I(conc^2) 1 1537784 1537784 16.0715 0.0008233 ***
## Residuals 21 1730185 82390
## Lack of fit 3 7878 2626 0.0274 0.9936437
## Pure Error 18 1722306 95684
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(amf1$conc, amf1.pm$residuals, pch = 19, col = "blue",

xlab = "concentration of AMF1", ylab = "residual error")

Part (d)

The simplest way to approach this is to complete a two-tailed paired t-test on the predicted results from each
model using the null hypothesis that there is no difference between the predicted values and the alternative
hypothesis that there is a significant difference. Note that these values are included as the “fitted.values”
returned as part of the linear model, and that we use just the first six values so that each concentration
is included just once. The results, which have a p-value of 1, show no evidence that there is a significant
difference between the predicted results from the two models.
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amf1.lm$fitted.values[1:6] - amf1.pm$fitted.values[1:6]

## 1 2 3 4 5 6
## -276.57902 -88.21844 151.31894 356.02445 193.63933 -336.18526
t.test(amf1.lm$fitted.values[1:6], amf1.pm$fitted.values[1:6],

mu = 0, alternative = "two.sided", paired = TRUE)

##
## Paired t-test
##
## data: amf1.lm$fitted.values[1:6] and amf1.pm$fitted.values[1:6]
## t = 0, df = 5, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -290.997 290.997
## sample estimates:
## mean of the differences
## 0

Note: a similar result is obtained in this case if you include all fitted values and treat the data as unpaired;
however, both are incorrect choices that can lead to incorrect interpreations with other data sets.
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