This is a comment; it is ignored by R.

The greater than sign, >, in the console is the command prompt;
this is where we enter a command we want R to execute. In a .R
script file we do not include the command prompt; however, when
we click the Run button, the command is sent to the R console
at the open greater than symbol and executed.

1+ 3

Returning the answer of 4 in the console. The number that

appears in brackets before the result of the calculation is the
index of the first value returned on that line, in this case 1.
We will see soon how to make use of this bracket and index. It
is useful to assign the result of a calculation to a named

object so that we can access it later. As we see here, names

are case-sensitive.

answer =1 + 3

Answer = 2 + 4

Note that when we assign the result of a calculation to an

object, the result of the calculation is not returned to the
console. Storing data in objects allows us to use the data in
calculations by using the object's name.

answer + Answer

There are a variety of objects that we can use to store data,

of which we will consider four: vectors, data frames,

matrices, and lists. A vector is an ordered collection of

elements all of the same type. Here are three vectors: a

numeric vector, a logical vector, and a character vector; these
vectors use the concatenate function c() to create the vector.
vector@l = c(1, 2, 3)

vector@2 = c(TRUE, TRUE, FALSE)

vector@3 = c("alpha", "bravo", '"charley")

Oops! the third element in vector@3, which is the first three
characters in NATO's phonetic alphabet, is misspelled; we can
correct this value by using the bracket symbol and the value's
index to identify the element we wish to change.

vector@3[3] = "charlie"

We can create a new vector by combining existing vectors using

the concatenate function; note that the elements of a vector
must be of the same type, so here R converts all elements to
characters.

vector@4 = c(vector@l, vector@2, vectoro3)

The sequence function, seq(), makes it easy to create numeric
vectors with patterned values. The sequence function has three
arguments: from, which is the first value in the sequence; to,
which is the last value in the sequence; and by, which is the
difference between each successive value. Note that if we do
not use the names of the arguments to the function, then R

assumes that the order is from, to, and by. Note, as well, that
x:y is the same as seq(x, y, 1).

vector@5 = seq(from = @0, to = 20, by = 4)

vector06 = seq(0, 10, 2)

vector@7 = 1:10

The repeat function, rep(), creates a vector by repeating a set
of values a specified number of time. Note the difference
between times and each.

vector@8 = rep(x = 1:4, times = 2)

vector@9 = rep(1l:4, each = 2)

We can identify which elements in a vector matches a specified
requirement. Here we use the exactly equals operator, ==, to
determine which elements of vector@8 have a value of 2 and
which do not; the which() function to determine which elements
of vector@8 have a value less than 3; and the not operator, !,
to determine which elements of vector@8 have values that are
not less than 3. Note that the == and the ! operators return
logical values for all of the vector's elements, but that the
which() function returns just the index values for the elements
of vector@8 that are less than 3.

HHBFHIFHHHRHHR

vector@8 ==

which(vector08 < 3)

lvector08 < 3

A data frame is a collection of vectors of equal length that
need not be of a single type of element, it is created using

the data.frame() function. Look carefully at how we entered the
third vector: when we subtract one vector from another vector,

the subtraction is carried out element-by-element. Note that a
data frame is like a spreadsheet where each column is a vector.

dataframe@l = data.frame(vector@8, vectore9,
vectorl® = vector@9 - vector08)

View(dataframe0l)

We can extract elements from a data frame by identify the cells
of interest using the bracket notation, [rows, columns], to
identify the desired row(s) and column(s). These three examples
return all values in the first row, all values in the second
and the third columns, and the single element in the fourth row
and the third column.

HHFHRFHRH

dataframe@l[1,]
dataframe@l[, 2:3]
dataframe0@l[4, 3]

A matrix is similar to a data frame, but all elements in a

matrix must have the same type. Here are two examples of how to
make a matrix with 10 values, the first a 5x2 matrix (five rows
and two columns) and the second a 2x5 (two rows and five

columns) matrix.

matrix@1 = matrix(1:10, nrow = 5)
matrix@02 = matrix(1:10, ncol = 5)
View(matrixo1l)
View(matrix02)

We can complete calculations using matrices, although the

details of how this is done are not always obvious; we will
explore this in more detail in the last third of the course;
for now, here is an example of matrix multiplication.

matrix0@1l %%x% matrix02

A list is similar to a vector, but its elements are other
objects, which can be of very different types.

1ist@1l = list(vector@l, dataframe@l, matrixo1l)
The bracket notation for extracting elements from a vector or a

data frame works here as well, but we use double brackets,
[[1], to identify the one of the list's objects and we use

single brackets, [], to identify element's with that object.
listo1[[2]]
liste1[[3]][4, 2]

Although we can create complex data sets using the commands
highlighted above, it usually is easier to read in data from
.csv file created using Excel, or by reading in data saved
during an earlier session as a .RData file. To do this we need
to know the pathname to the file. The simplest approach is to
do our work in the same directory where the files we need are
stored by either (a) choosing Session: Set Working Directory
from RStudio's main menu and navigating to the desired folder,
or by (b) selecting More: Set as Working Directory from the
Files tab from the Files, Plots, Packages... panel. Both
approaches are equivalent to entering the following command.

HHFEHRFHRIHRBFRERESHR

setwd("~/Box Sync/p-harvey/Teaching/Chem 351/Class Units/
01.Course_Introduction")

Assuming that we are in the working directory, we can use the
load() function to read in a .RDaa file and the read.csv()

function to read in a .csv file. For the former, the objects

are added directly to the our workspace; for the latter, we

have to assign the data to an object so that it is available to
us.

load(file = "BeefLiver.RData")
elements = read.csv(file = "ElementData.csv")

We also can load files without worrying about identifying the
working directory by using the file.choose() function within
load() or read.csv()

elements.new = read.csv(file.choose())

The source() function reads in a script file and runs it. The
script in the file sampleScript.R, for example, creates four
plots of the variables x1, x2, yl, and y2 where x1 and x2 each
contain 1000 values from a random uniform distribution between
®@ and 1, and yl and y2 each contain 1000 values from a random
normal distribution with a mean of @ and a standard deviation
of 1.

HHHHHHH

source(file = "sampleScript.R")

Saving your work is important; you can save your data to an
.RData file or to a .csv file using the save() or the

write.csv() functions.
save(PBconc, elements, file = "saved.RData")
write.csv(elements, file = "saved.cvs")

Finally, you can find help on how to use a function by passing
the function's name to the help() function.

help(rnorm)

