Chemical reagents have a limited shelf-life. To determine the effect of light on a reagent's stability, a freshly prepared solution is stored for one hour under three different light conditions: total dark, subdued light, and full light. At the end of one hour, each solution was analyzed three times, yielding the following percent recoveries; a recovery of 100% means that the measured concentration is the same as the actual concentration.

\downarrow trial/condition \rightarrow	A (total dark)	B (subdued light)	C (full light)
1	101	97	90
2	101	95	92
3	104	99	94

Calculating a One-Way Analysis of Variance

1. Treat the data as one large data set and calculate its mean and its variance, which we call the global mean, $\overline{\bar{x}}$, and the global variance, $\overline{\overline{s^{2}}}$.

$$
\begin{gathered}
\overline{\bar{x}}=\frac{\sum_{i=1}^{h} \sum_{j=1}^{n_{i}} x_{i j}}{N} \\
\overline{\overline{\overline{2}}}=\frac{\sum_{i=1}^{h} \sum_{j=1}^{n_{i}}\left(x_{i j}-\overline{\bar{x}}\right)^{2}}{N-1}
\end{gathered}
$$

where h is the number of treatments, n_{i} is the number of replicates for the $i^{t h}$ treatment, and N is the total number of measurements.
2. Calculate the within-sample variance, s_{w}^{2}, using the mean for each treatment, \bar{x}_{i}, and the replicates for that treatment.

$$
s_{w}^{2}=\frac{\sum_{i=1}^{h} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2}}{N-h}
$$

3. Calculate the between-sample variance, s_{b}^{2}, using the means for each treatment and the global mean

$$
s_{b}^{2}=\frac{\sum_{i=1}^{h} \sum_{j=1}^{n_{i}}\left(\bar{x}_{i}-\overline{\bar{x}}\right)^{2}}{h-1}=\frac{\sum_{i=1}^{h} n_{i}\left(\bar{x}_{i}-\overline{\bar{x}}\right)^{2}}{h-1}
$$

4. If there is a significant difference between the treatments, then s_{b}^{2} should be significantly greater than s_{w}^{2}, which we evaluate using a one-tailed F-test where

- $H_{0}: s_{b}^{2}=s_{w}^{2}$
- $H_{A}: s_{b}^{2}>s_{w}^{2}$

5. If there is a significant difference, then we estimate $\sigma_{\text {rand }}^{2}$ and $\sigma_{\text {systematic }}^{2}$ as

- $s_{w}^{2} \approx \sigma_{\text {rand }}^{2}$
- $s_{b}^{2} \approx \sigma_{\text {rand }}^{2}+\bar{n} \sigma_{\text {systematic }}^{2}$
where \bar{n} is the average number of replicates per treatment.
This seems like a lot of work, but we can simplify the calculations by noting that

$$
\begin{gathered}
S S_{\text {total }}=\sum_{i=1}^{h} \sum_{j=1}^{n_{i}}\left(x_{i j}-\overline{\bar{x}}\right)^{2}=\bar{s}^{\overline{2}}(N-1) \\
S S_{w}=\sum_{i=1}^{h} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2} \\
S S_{b}=\sum_{i=1}^{h} n_{i}\left(\bar{x}_{i}-\overline{\bar{x}}\right)^{2} \\
S S_{\text {total }}=S S_{w}+S S_{b}
\end{gathered}
$$

and that $S S_{\text {total }}$ and $S S_{b}$ are relatively easy to calculate; thus

source of variance	sum-of-squares	degrees of freedom	variance
between	$\sum_{i=1}^{h} n_{i}\left(\bar{x}_{i}-\overline{\bar{x}}\right)^{2}$	$h-1$	$s_{b}^{2}=\frac{S S_{b}}{h-1}$
within	$S S_{w}=S S_{\text {total }}-S S_{b}$	$N-h$	$s_{w}^{2}=\frac{S S_{w}}{N-h}$
total	$S S_{\text {total }}=\overline{\bar{s}}^{2}(N-1)$		

