Key for Short Problem Set 2

In SPS01 you worked with a data set consisting of $301.69-\mathrm{oz}$ bags of $\mathrm{M} \& \mathrm{Ms}$ for which the number of yellow M\&Ms were reported as

231516161871781617132313108
1513141822155121616141914148
The experimental mean for this data set is 14.5 and the experimental standard deviation is 4.46 . If we assume that these are good estimates for the true mean, μ, and the true standard deviation, σ, then what is the probability that the number of yellow $\mathrm{M} \& \mathrm{Ms}$ in a single random sample is:

1. between 16 and 23
2. greater than 17
3. less than 13

Answers

1. To find the probability for a result between 16 and 23 , we first find the area to the right of 16 by calculating its value of z

$$
z=\frac{16-14.5}{4.46}=0.336
$$

and use the probability table to get 36.8%, and then subtracting from this the area to right of 23 , which from its value of z

$$
z=\frac{23-14.5}{4.46}=1.906
$$

is 2.8%; thus, the net probability is $36.8 \%-2.8 \%=34.0 \%$.
2. To find the probablity of a result greater than 17 , we find the area to the right of 17 by calculating its value of z

$$
z=\frac{17-14.5}{4.46}=0.561
$$

and use the probability table to get 28.8%.
3. To find the probablity of a result less than 13 , we find the area to the left of 13 by calculating its value of z

$$
z=\frac{13-14.5}{4.46}=-0.336
$$

and use the probability table to get 36.8%.

