Key for Short Problem Set 6

We begin by completing the remaining entries in this table

experiment	b_{0}	$\mathrm{~b}_{\mathrm{a}}$	b_{b}	b_{c}	b_{ab}	b_{ac}	b_{bc}	$\mathrm{b}_{\mathrm{abc}}$	rate $\left(\mathrm{min}^{-1}\right)$
1	+1	+1	-1	+1	-1	+1	-1	-1	6.69
2	+1	+1	+1	+1	+1	+1	+1	+1	11.71
3	+1	+1	+1	-1	+1	-1	-1	-1	14.79
4	+1	+1	-1	-1	-1	-1	+1	+1	8.05
5	+1	-1	-1	+1	+1	-1	-1	+1	6.33
6	+1	-1	+1	+1	-1	-1	+1	-1	11.11
7	+1	-1	+1	-1	-1	+1	-1	+1	14.08
8	+1	-1	-1	-1	+1	+1	+1	-1	7.59

and then using the table to organize our calculations, reporting, for now, exact values without regard to significant figures.

$$
\begin{aligned}
& b_{0}=\frac{6.69+11.71+14.79+8.05+6.33+11.11+14.08+7.59}{8}=10.04375 \\
& b_{a}=\frac{6.69+11.71+14.79+8.05-6.33-11.11-14.08-7.59}{8}=0.26625 \\
& b_{b}=\frac{-6.69+11.71+14.79-8.05-6.33+11.11+14.08-7.59}{8}=2.87875 \\
& b_{c}=\frac{6.69+11.71-14.79-8.05+6.33+11.11-14.08-7.59}{8}=-1.08375 \\
& b_{a b}=\frac{-6.69+11.71+14.79-8.05+6.33-11.11-14.08+7.59}{8}=0.06125 \\
& b_{a c}=\frac{6.69+11.71-14.79-8.05-6.33-11.11+14.08+7.59}{8}=-0.02625 \\
& b_{b c}=\frac{-6.69+11.71-14.79+8.05-6.33+11.11-14.08+7.59}{8}=-0.42875 \\
& b_{a b c}=\frac{-6.69+11.71-14.79+8.05+6.33-11.11+14.08-7.59}{8}=-0.00125
\end{aligned}
$$

Given that we have two decimal places for the rate, let's maintain three decimal places for each parameter and round any resulting calculations to two decimal places; thus, our model is

$$
R=10.044+0.266 A^{*}+2.879 B^{*}-1.084 C^{*}+0.61 A^{*} B^{*}-0.26 A^{*} C^{*}-0.429 B^{*} C^{*}-0.001 A^{*} B^{*} C^{*}
$$

To convert between coded and uncoded values, we note that

$$
\begin{gathered}
A=37.5+2.5 A^{*} \\
B=13.9+13.4 B^{*} \\
C=5.6-0.8 C *
\end{gathered}
$$

Substituting in the desired values for $\mathrm{A}\left(36^{\circ} \mathrm{C}\right)$, for $\mathrm{B}(10.0 \mathrm{mM})$, and for $\mathrm{C}(5.0)$ gives $A^{*}=-0.600$, $B^{*}=-0.291$, and $C^{*}=0.75$. Substitutin these into our model gives the rate as $8.35 \mathrm{~min}^{-1}$.

