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The American Chemical Society’s Committee on Environmental Improvement defines 
standardization as the process of determining the relationship between the signal and the 
amount of analyte in a sample.1 In Chapter 3 we defined this relationship as

S k n S S k Cortotal A A reag total A A= + =

where Stotal is the signal, nA is the moles of analyte, CA is the analyte’s concentration, kA is the 
method’s sensitivity for the analyte, and Sreag is the contribution to Stotal from sources other 
than the sample. To standardize a method we must determine values for kA and Sreag. Strategies 
for accomplishing this are the subject of this chapter.

1	 ACS Committee on Environmental Improvement “Guidelines for Data Acquisition and Data Quality Evaluation in 
Environmental Chemistry,” Anal. Chem. 1980, 52, 2242–2249.
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5A  Analytical Standards
To standardize an analytical method we use standards that contain known 
amounts of analyte. The accuracy of a standardization, therefore, depends 
on the quality of the reagents and the glassware we use to prepare these 
standards. For example, in an acid–base titration the stoichiometry of the 
acid–base reaction defines the relationship between the moles of analyte 
and the moles of titrant. In turn, the moles of titrant is the product of the 
titrant’s concentration and the volume of titrant used to reach the equiva-
lence point. The accuracy of a titrimetric analysis, therefore, is never better 
than the accuracy with which we know the titrant’s concentration. 

5A.1  Primary and Secondary Standards

There are two categories of analytical standards: primary standards and sec-
ondary standards. A primary standard is a reagent that we can use to 
dispense an accurately known amount of analyte. For example, a 0.1250-g 
sample of K2Cr2O7 contains 4.249 × 10–4 moles of K2Cr2O7. If we place 
this sample in a 250-mL volumetric flask and dilute to volume, the concen-
tration of K2Cr2O7  in the resulting solution is 1.700 × 10–3 M. A primary 
standard must have a known stoichiometry, a known purity (or assay), and 
it must be stable during long-term storage. Because it is difficult to estab-
lishing accurately the degree of hydration, even after drying, a hydrated 
reagent usually is not a primary standard. 

Reagents that do not meet these criteria are secondary standards. 
The concentration of a secondary standard is determined relative to a pri-
mary standard. Lists of acceptable primary standards are available.2 Appen-
dix 8 provides examples of some common primary standards.

5A.2  Other Reagents

Preparing a standard often requires additional reagents that are not primary 
standards or secondary standards, such as a suitable solvent or reagents 
needed to adjust the standard’s matrix. These solvents and reagents are po-
tential sources of additional analyte, which, if not accounted for, produce 
a determinate error in the standardization. If available, reagent grade 
chemicals that conform to standards set by the American Chemical Society 
are used.3 The label on the bottle of a reagent grade chemical (Figure 5.1) 
lists either the limits for specific impurities or provides an assay for the 
impurities. We can improve the quality of a reagent grade chemical by pu-
rifying it, or by conducting a more accurate assay. As discussed later in the 
chapter, we can correct for contributions to Stotal from reagents used in an 

2	 (a) Smith, B. W.; Parsons, M. L. J. Chem. Educ. 1973, 50, 679–681; (b) Moody, J. R.; Green-
burg, P. R.; Pratt, K. W.; Rains, T. C. Anal. Chem. 1988, 60, 1203A–1218A.

3	 Committee on Analytical Reagents, Reagent Chemicals, 8th ed., American Chemical Society: 
Washington, D. C., 1993.

See Chapter 9 for a thorough discussion of 
titrimetric methods of analysis.

NaOH is one example of a secondary 
standard. Commercially available NaOH 
contains impurities of NaCl, Na2CO3, 
and Na2SO4, and readily absorbs H2O 
from the atmosphere. To determine the 
concentration of NaOH in a solution, we 
titrate it against a primary standard weak 
acid, such as potassium hydrogen phthal-
ate, KHC8H4O4.
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analysis by including an appropriate blank determination in the analytical 
procedure.

5A.3  Preparing a Standard Solution

It often is necessary to prepare a series of standards, each with a different 
concentration of analyte. We can prepare these standards in two ways. If the 
range of concentrations is limited to one or two orders of magnitude, then 
each solution is best prepared by transferring a known mass or volume of 
the pure standard to a volumetric flask and diluting to volume. 

When working with a larger range of concentrations, particularly a 
range that extends over more than three orders of magnitude, standards 
are best prepared by a serial dilution from a single stock solution. In a 
serial dilution we prepare the most concentrated standard and then dilute 
a portion of that solution to prepare the next most concentrated standard. 
Next, we dilute a portion of the second standard to prepare a third standard, 
continuing this process until we have prepared all of our standards. Serial 
dilutions must be prepared with extra care because an error in preparing 
one standard is passed on to all succeeding standards.

Figure 5.1 Two examples of packaging labels for reagent grade chemicals. The label in (a) pro-
vides the manufacturer’s assay for the reagent, NaBr. Note that potassium is flagged with an 
asterisk (*) because its assay exceeds the limit established by the American Chemical Society 
(ACS). The label in (b) does not provide an assay for impurities; however it indicates that the 
reagent meets ACS specifications by providing the maximum limits for impurities. An assay for 
the reagent, NaHCO3, is provided.

(a) (b)
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5B  Calibrating the Signal (Stotal)
The accuracy with which we determine kA and Sreag depends on how accu-
rately we can measure the signal, Stotal. We measure signals using equipment, 
such as glassware and balances, and instrumentation, such as spectropho-
tometers and pH meters. To minimize determinate errors that might affect 
the signal, we first calibrate our equipment and instrumentation by measur-
ing Stotal for a standard with a known response of Sstd, adjusting Stotal until 

S Stotal std=

Here are two examples of how we calibrate signals; other examples are pro-
vided in later chapters that focus on specific analytical methods.

When the signal is a measurement of mass, we determine Stotal using 
an analytical balance. To calibrate the balance’s signal we use a reference 
weight that meets standards established by a governing agency, such as the 
National Institute for Standards and Technology or the American Society 
for Testing and Materials. An electronic balance often includes an internal 
calibration weight for routine calibrations, as well as programs for calibrat-
ing with external weights. In either case, the balance automatically adjusts 
Stotal to match Sstd.

We also must calibrate our instruments. For example, we can evaluate 
a spectrophotometer’s accuracy by measuring the absorbance of a carefully 
prepared solution of 60.06 mg/L K2Cr2O7 in 0.0050 M H2SO4, using 
0.0050 M H2SO4 as a reagent blank.4 An absorbance of 0.640 ± 0.010 
absorbance units at a wavelength of 350.0 nm indicates that the spectrom-
eter’s signal is calibrated properly. 

5C  Determining the Sensitivity (kA)
To standardize an analytical method we also must determine the analyte’s 
sensitivity, kA, in equation 5.1 or equation 5.2.

S k n Stotal A A reag= + 5.1

S k C Stotal A A reag= + 5.2
In principle, it is possible to derive the value of kA for any analytical method 
if we understand fully all the chemical reactions and physical processes re-
sponsible for the signal. Unfortunately, such calculations are not feasible if 
we lack a sufficiently developed theoretical model of the physical processes 
or if the chemical reaction’s evince non-ideal behavior. In such situations we 
must determine the value of kA by analyzing one or more standard solutions, 
each of which contains a known amount of analyte. In this section we con-
sider several approaches for determining the value of kA. For simplicity we 
assume that Sreag is accounted for by a proper reagent blank, allowing us to 
replace Stotal in equation 5.1 and equation 5.2 with the analyte’s signal, SA.

4	 Ebel, S. Fresenius J. Anal. Chem. 1992, 342, 769.

See Section 2D.1 to review how an elec-
tronic balance works. Calibrating a bal-
ance is important, but it does not elimi-
nate all sources of determinate error when 
measuring mass. See Appendix 9 for a 
discussion of correcting for the buoyancy 
of air.

Be sure to read and follow carefully  the 
calibration instructions provided with any 
instrument you use.
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S k nA A A= 5.3

S k CA A A= 5.4

5C.1  Single-Point versus Multiple-Point Standardizations

The simplest way to determine the value of kA in equation 5.4 is to use 
a single-point standardization in which we measure the signal for a 
standard, Sstd, that contains a known concentration of analyte, Cstd. Substi-
tuting these values into equation 5.4

k C
S

A
std

std= 5.5

gives us the value for kA. Having determined kA, we can calculate the con-
centration of analyte in a sample by measuring its signal, Ssamp, and calculat-
ing CA using equation 5.6.

C k
S

A
A

samp
= 5.6

A single-point standardization is the least desirable method for stan-
dardizing a method. There are two reasons for this. First, any error in our 
determination of kA carries over into our calculation of CA. Second, our 
experimental value for kA is based on a single concentration of analyte. To 
extend this value of kA to other concentrations of analyte requires that 
we assume a linear relationship between the signal and the analyte’s con-
centration, an assumption that often is not true.5 Figure 5.2 shows how 
assuming a constant value of kA leads to a determinate error in CA if kA be-
comes smaller at higher concentrations of analyte. Despite these limitations, 
single-point standardizations find routine use when the expected range for 
the analyte’s concentrations is small. Under these conditions it often is safe 

5	 Cardone, M. J.; Palmero, P. J.; Sybrandt, L. B. Anal. Chem. 1980, 52, 1187–1191.

Equation 5.3 and equation 5.4 essentially 
are identical, differing only in whether we 
choose to express the amount of analyte 
in moles or as a concentration. For the re-
mainder of this chapter we will limit our 
treatment to equation 5.4. You can extend 
this treatment to equation 5.3 by replac-
ing CA with nA.

Figure 5.2 Example showing how a single-point standard-
ization leads to a determinate error in an analyte’s reported 
concentration if we incorrectly assume that kA is constant. 
The assumed relationship between Ssamp and CA is based on 
a single standard and is a straight-line; the actual relationship 
between Ssamp and CA becomes curved for larger concentra-
tions of analyte.

(CA)reportedCstd

Sstd

Ssamp

(CA)actual

actual relationship

assumed relationship
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to assume that kA is constant (although you should verify this assumption 
experimentally). This is the case, for example, in clinical labs where many 
automated analyzers use only a single standard.

The better way to standardize a method is to prepare a series of standards, 
each of which contains a different concentration of analyte. Standards are 
chosen such that they bracket the expected range for the analyte’s concen-
tration. A multiple-point standardization should include at least three 
standards, although more are preferable. A plot of Sstd versus Cstd is called a 
calibration curve. The exact standardization, or calibration relationship, 
is determined by an appropriate curve-fitting algorithm. 

There are two advantages to a multiple-point standardization. First, al-
though a determinate error in one standard introduces a determinate error, 
its effect is minimized by the remaining standards. Second, because we 
measure the signal for several concentrations of analyte, we no longer must 
assume kA is independent of the analyte’s concentration. Instead, we can 
construct a calibration curve similar to the “actual relationship” in Figure 
5.2. 

5C.2  External Standards

The most common method of standardization uses one or more external 
standards, each of which contains a known concentration of analyte. We 
call these standards “external” because they are prepared and analyzed sepa-
rate from the samples.

Single External Standard

With a single external standard we determine kA using equation 5.5 and 
then calculate the concentration of analyte, CA, using equation 5.6.

Example 5.1

A spectrophotometric method for the quantitative analysis of Pb2+ in 
blood yields an Sstd of 0.474 for a single standard for which the concentra-
tion of lead is 1.75 ppb. What is the concentration of Pb2+ in a sample of 
blood for which Ssamp is 0.361?

Solution
Equation 5.5 allows us to calculate the value of kA using the data for the 
single external standard.

  .
. .k C

S
1 75

0 474 0 2709ppb ppmA
std

std 1= = = -

Having determined the value of kA, we calculate the concentration of Pb2+ 
in the sample of blood is calculated using equation 5.6.

.
. .C k

S
0 2709

0 361 1 33ppm ppbA
A

samp
1= = =-

Appending the adjective “external” to 
the noun “standard” might strike you as 
odd at this point, as it seems reasonable 
to assume that standards and samples are 
analyzed separately. As we will soon learn, 
however, we can add standards to our 
samples and analyze both simultaneously. 

Linear regression, which also is known as 
the method of least squares, is one such al-
gorithm. Its use is covered in Section 5D.
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Multiple External Standards

Figure 5.3 shows a typical multiple-point external standardization. The 
volumetric flask on the left contains a reagent blank and the remaining 
volumetric flasks contain increasing concentrations of Cu2+. Shown be-
low the volumetric flasks is the resulting calibration curve. Because this is 
the most common method of standardization, the resulting relationship is 
called a normal calibration curve. 

When a calibration curve is a straight-line, as it is in Figure 5.3, the 
slope of the line gives the value of kA. This is the most desirable situation 
because the method’s sensitivity remains constant throughout the analyte’s 
concentration range. When the calibration curve is not a straight-line, the 
method’s sensitivity is a function of the analyte’s concentration. In Figure 
5.2, for example, the value of kA is greatest when the analyte’s concentration 
is small and it decreases continuously for higher concentrations of analyte. 
The value of kA at any point along the calibration curve in Figure 5.2 is the 
slope at that point. In either case, a calibration curve allows to relate Ssamp 
to the analyte’s concentration.

Example 5.2

A second spectrophotometric method for the quantitative analysis of Pb2+ 
in blood has a normal calibration curve for which

( . ) .S C0 296 0 003ppbstd std
1 #= +-

What is the concentration of Pb2+ in a sample of blood if Ssamp is 0.397?

0 0.0020 0.0040 0.0060 0.0080
0

0.05

0.10

0.15

0.20

Sstd

Cstd (M)

0.25

Figure 5.3 The photo at the top of the figure shows 
a reagent blank (far left) and a set of five external 
standards for Cu2+ with concentrations that in-
crease from left-to-right. Shown below the external 
standards is the resulting normal calibration curve. 
The absorbance of each standard, Sstd, is shown by 
the filled circles.
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Solution
To determine the concentration of Pb2+ in the sample of blood, we replace 
Sstd in the calibration equation with Ssamp and solve for CA.

.
.

.
. . .C S

0 296
0 003

0 296
0 397 0 003 1 33ppb ppb ppbA

samp
1 1=

-
= - =- -

It is worth noting that the calibration equation in this problem includes 
an extra term that does not appear in equation 5.6. Ideally we expect 
our calibration curve to have a signal of zero when CA is zero. This is the 
purpose of using a reagent blank to correct the measured signal. The extra 
term of +0.003 in our calibration equation results from the uncertainty 
in measuring the signal for the reagent blank and the standards.

An external standardization allows us to analyze a series of samples 
using a single calibration curve. This is an important advantage when we 
have many samples to analyze. Not surprisingly, many of the most common 
quantitative analytical methods use an external standardization. 

There is a serious limitation, however, to an external standardization. 
When we determine the value of kA using equation 5.5, the analyte is pres-
ent in the external standard’s matrix, which usually is a much simpler ma-
trix than that of our samples. When we use an external standardization we 
assume the matrix does not affect the value of kA. If this is not true, then 
we introduce a proportional determinate error into our analysis. This is not 
the case in Figure 5.4, for instance, where we show calibration curves for 
an analyte in the sample’s matrix and in the standard’s matrix. In this case, 
using the calibration curve for the external standards leads to a negative de-
terminate error in analyte’s reported concentration. If we expect that matrix 
effects are important, then we try to match the standard’s matrix to that of 
the sample, a process known as matrix matching. If we are unsure of the 
sample’s matrix, then we must show that matrix effects are negligible or use 
an alternative method of standardization. Both approaches are discussed in 
the following section.

Practice Exercise 5.1
Figure 5.3 shows a normal calibration curve for the quantitative analysis 
of Cu2+. The equation for the calibration curve is

Sstd = 29.59 M–1 × Cstd + 0.0015

What is the concentration of Cu2+ in a sample whose absorbance, Ssamp, 
is 0.114? Compare your answer to a one-point standardization where a 
standard of 3.16 × 10–3 M Cu2+ gives a signal of 0.0931.

Click here to review your answer to this exercise.

The one-point standardization in this ex-
ercise uses data from the third volumetric 
flask in Figure 5.3.

The matrix for the external standards in 
Figure 5.3, for example, is dilute ammo-
nia. Because the Cu (NH )3 4

2+  complex 
absorbs more strongly than Cu2+, adding 
ammonia increases the signal’s magnitude.  
If we fail to add the same amount of am-
monia to our samples, then we will in-
troduce a proportional determinate error 
into our analysis.
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5C.3  Standard Additions

We can avoid the complication of matching the matrix of the standards to 
the matrix of the sample if we carry out the standardization in the sample. 
This is known as the method of standard additions. 

Single Standard Addition

The simplest version of a standard addition is shown in Figure 5.5. First we 
add a portion of the sample, Vo, to a volumetric flask, dilute it to volume, 
Vf, and measure its signal, Ssamp. Next, we add a second identical portion 
of sample to an equivalent volumetric flask along with a spike, Vstd, of an 
external standard whose concentration is Cstd. After we dilute the spiked 
sample to the same final volume, we measure its signal, Sspike. The following 
two equations relate Ssamp and Sspike to the concentration of analyte, CA, in 
the original sample.

S k C V
V

samp A A
f

o= 5.7

S k C V
V C V

V
spike A A

f

o
std

f

std= +a k 5.8

As long as Vstd is small relative to Vo, the effect of the standard’s matrix on 
the sample’s matrix is insignificant. Under these conditions the value of kA 
is the same in equation 5.7 and equation 5.8. Solving both equations for 
kA and equating gives

C V
V

S

C V
V C V

V
S

A
f

o

samp

A
f

o
std

f

std

spike
=

+ 5.9

which we can solve for the concentration of analyte, CA, in the original 
sample.

(CA)reported

Ssamp

(CA)actual

standard’s
matrix

sample’s
matrix

Figure 5.4 Calibration curves for an analyte in the 
standard’s matrix and in the sample’s matrix. If the 
matrix affects the value of kA, as is the case here, then 
we introduce a proportional determinate error into 
our analysis if we use a normal calibration curve.

The ratios Vo/Vf  and Vstd/Vf  account for 
the dilution of the sample and the stan-
dard, respectively.
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Example 5.3

A third spectrophotometric method for the quantitative analysis of Pb2+ in 
blood yields an Ssamp of 0.193 when a 1.00 mL sample of blood is diluted 
to 5.00 mL. A second 1.00 mL sample of blood is spiked with 1.00 mL of 
a 1560-ppb Pb2+ external standard and diluted to 5.00 mL, yielding an 
Sspike of 0.419. What is the concentration of Pb2+ in the original sample 
of blood?

Solution
We begin by making appropriate substitutions into equation 5.9 and solv-
ing for CA. Note that all volumes must be in the same units; thus, we first 
covert Vstd from 1.00 mL to 1.00 × 10–3 mL.

.
.
.

.
.

.
.

.
C C5 00

1 00
0 193

5 00
1 00 1560 5 00

1 00 10
0 419

mL
mL

mL
mL ppb mL

mL
A A

3#
=

+
-

.
.

. .
.

C C0 200
0 193

0 200 0 3120
0 419

ppbA A
=

+

. . .C C0 0386 0 0602 0 0838ppbA A+ =

. .C0 0452 0 0602 ppbA=

.C 1 33 ppbA=

The concentration of Pb2+ in the original sample of blood is 1.33 ppb.

add Vo of CA add Vstd of Cstd

dilute to Vf

C
V
VA

o

f

× C
V
V

C
V
VA

f
std

std

f

× + ×Concentration
of Analyte

o

Figure 5.5 Illustration showing the method of stan-
dard additions. The volumetric flask on the left con-
tains a portion of the sample, Vo, and the volumetric 
flask on the right contains an identical portion of the 
sample and a spike, Vstd, of a standard solution of the 
analyte. Both flasks are diluted to the same final vol-
ume, Vf. The concentration of analyte in each flask is 
shown at the bottom of the figure where CA is the ana-
lyte’s concentration in the original sample and Cstd is 
the concentration of analyte in the external standard.
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It also is possible to add the standard addition directly to the sample, 
measuring the signal both before and after the spike (Figure 5.6). In this 
case the final volume after the standard addition is Vo + Vstd and equation 
5.7, equation 5.8, and equation 5.9 become

S k Csamp A A=

S k C V V
V C V V

V
spike A A

o std

o
std

o std

std= + + +a k 5.10

C
S

C V V
V C V V

V
S

A

samp

A
o std

o
std

o std

std

spike
=

+ + +
5.11

Example 5.4

A fourth spectrophotometric method for the quantitative analysis of Pb2+ 
in blood yields an Ssamp of 0.712 for a 5.00 mL sample of blood. After spik-
ing the blood sample with 5.00 mL of a 1560-ppb Pb2+ external standard, 
an Sspike of 1.546 is measured. What is the concentration of Pb2+ in the 
original sample of blood?

Solution
To determine the concentration of Pb2+ in the original sample of blood, 
we make appropriate substitutions into equation 5.11 and solve for CA.

.

.
.

.
.

.
C C

0 712

5 005
5 00 1560 5 005

5 00 10
1 546

mL
mL ppb mL

mLA
A

3#
=

+
-

.
. .

.
C C

0 712
0 9990 1 558

1 546
ppbA A

=
+

add Vstd of Cstd

Concentration
of Analyte

Vo Vo

CA
C

V
V V

C
V

V VA
o

o s td
std

std

o s td+
+

+

Figure 5.6 Illustration showing an alternative form of the method of standard 
additions. In this case we add the spike of external standard directly to the sample 
without any further adjust in the volume.

Vo + Vstd = 5.000 mL + 5.00×10–3 mL 

                 = 5.005 mL
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. . .C C0 7113 1 109 1 546ppbA A+ =

 .C 1 33 ppbA=

The concentration of Pb2+ in the original sample of blood is 1.33 ppb.

Multiple Standard Additions

We can adapt a single-point standard addition into a multiple-point stan-
dard addition by preparing a series of samples that contain increasing 
amounts of the external standard. Figure 5.7 shows two ways to plot a 
standard addition calibration curve based on equation 5.8. In Figure 5.7a 
we plot Sspike against the volume of the spikes, Vstd. If kA is constant, then 
the calibration curve is a straight-line. It is easy to show that the x-intercept 
is  equivalent to –CAVo/Cstd.

Example 5.5

Beginning with equation 5.8 show that the equations in Figure 5.7a for 
the slope, the y-intercept, and the x-intercept are correct.

Solution
We begin by rewriting equation 5.8 as

S V
k C V

V
k C Vspike

f

A A o

f

A std
std#= +

which is in the form of the equation for a straight-line

y = y-intercept + slope × x

where y is Sspike and x is Vstd. The slope of the line, therefore, is kACstd/Vf 
and the y-intercept is kACAVo/Vf. The x-intercept is the value of x when y 
is zero, or

V
k C V

V
k V x0 -intercept

f

A A o

f

A std #= +

k C V
k C V V

C
C Vx-intercept

A std f

A A o f

std

A o=- =-

Practice Exercise 5.2
Beginning with equation 5.8 show that the equations in Figure 5.7b for 
the slope, the y-intercept, and the x-intercept are correct.

Click here to review your answer to this exercise.

Because we know the volume of the original sample, Vo, and the con-
centration of the external standard, Cstd, we can calculate the analyte’s con-
centrations from the x-intercept of a multiple-point standard additions. 
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Example 5.6

A fifth spectrophotometric method for the quantitative analysis of Pb2+ 
in blood uses a multiple-point standard addition based on equation 5.8. 
The original blood sample has a volume of 1.00 mL and the standard used 
for spiking the sample has a concentration of 1560 ppb Pb2+. All samples 
were diluted to 5.00 mL before measuring the signal. A calibration curve 
of Sspike versus Vstd has the following equation

.S V0 266 312 mLspike std
1 #= + -

What is the concentration of Pb2+ in the original sample of blood?

Solution
To find the x-intercept we set Sspike equal to zero.

 . V0 0 266 312 mL std
1 #= + -

-4.00 -2.00 0 2.00 4.00 6.00 8.00 10.00 12.00
0

0.10

0.20

0.30

0.40

0.50

0.60

Sspike

Cstd
Vstd

Vf
×

slope = kA

x-intercept = 
-CAVo

Vf

0

0.10

0.20

0.30

0.40

0.50

0.60

Sspike

-2.00 0 2.00 4.00 6.00

Cstd

Vstd

slope =
kACstd

Vf

x-intercept = 
-CAVo

y-intercept = 
kACAVo

Vf

(a)

(b)

(mL)

(mg/L)

y-intercept = 
kACAVo

Vf

Figure 5.7 Shown at the top of the 
figure is a set of six standard additions 
for the determination of Mn2+. The 
flask on the left is a 25.00 mL sample 
diluted to 50.00 mL with water. The 
remaining flasks contain 25.00 mL of 
sample and, from left-to-right, 1.00, 
2.00, 3.00, 4.00, and 5.00 mL spikes 
of an external standard that is 100.6 
mg/L Mn2+. Shown below are two 
ways to plot the standard additions 
calibration curve. The absorbance for 
each standard addition, Sspike, is shown 
by the filled circles.
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Solving for Vstd, we obtain a value of –8.526 × 10–4 mL for the x-intercept. 
Substituting the x-intercept’s value into the equation from Figure 5.7a 

. .
C

C V C8 526 10 1560
1 00mL ppb

mL
std

A o A4# #- =- =--

and solving for CA gives the concentration of Pb2+ in the blood sample as 
1.33 ppb.

Since we construct a standard additions calibration curve in the sample, 
we can not use the calibration equation for other samples. Each sample, 
therefore, requires its own standard additions calibration curve. This is a 
serious drawback if you have many samples. For example, suppose you need 
to analyze 10 samples using a five-point calibration curve. For a normal 
calibration curve you need to analyze only 15 solutions (five standards and 
ten samples). If you use the method of standard additions, however, you 
must analyze 50 solutions (each of the ten samples is analyzed five times, 
once before spiking and after each of four spikes).

Using a Standard Addition to Identify Matrix Effects

We can use the method of standard additions to validate an external stan-
dardization when matrix matching is not feasible. First, we prepare a nor-
mal calibration curve of Sstd versus Cstd and determine the value of kA from 
its slope. Next, we prepare a standard additions calibration curve using 
equation 5.8, plotting the data as shown in Figure 5.7b. The slope of this 
standard additions calibration curve provides an independent determina-
tion of kA. If there is no significant difference between the two values of 
kA, then we can ignore the difference between the sample’s matrix and that 
of the external standards. When the values of kA are significantly different, 

Practice Exercise 5.3
Figure 5.7 shows a standard additions calibration curve for the quantita-
tive analysis of Mn2+. Each solution contains 25.00 mL of the original 
sample and either 0, 1.00, 2.00, 3.00, 4.00, or 5.00 mL of a 100.6 mg/L 
external standard of Mn2+. All standard addition samples were diluted to 
50.00 mL with water before reading the absorbance. The equation for the 
calibration curve in Figure 5.7a is

Sstd = 0.0854 × Vstd + 0.1478

What is the concentration of Mn2+ in this sample? Compare your answer 
to the data in Figure 5.7b, for which the calibration curve is

Sstd = 0.0425 × Cstd(Vstd/Vf) + 0.1478

Click here to review your answer to this exercise.
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then using a normal calibration curve introduces a proportional determi-
nate error. 

5C.4  Internal Standards

To use an external standardization or the method of standard additions, we 
must be able to treat identically all samples and standards. When this is not 
possible, the accuracy and precision of our standardization may suffer. For 
example, if our analyte is in a volatile solvent, then its concentration will 
increase if we lose solvent to evaporation. Suppose we have a sample and a 
standard with identical concentrations of analyte and identical signals. If 
both experience the same proportional loss of solvent, then their respective 
concentrations of analyte and signals remain identical. In effect, we can ig-
nore evaporation if the samples and the standards experience an equivalent 
loss of solvent. If an identical standard and sample lose different amounts 
of solvent, however, then their respective concentrations and signals are 
no longer equal. In this case a simple external standardization or standard 
addition is not possible.

We can still complete a standardization if we reference the analyte’s 
signal to a signal from another species that we add to all samples and stan-
dards. The species, which we call an internal standard, must be different 
than the analyte.

Because the analyte and the internal standard receive the same treat-
ment, the ratio of their signals is unaffected by any lack of reproducibility in 
the procedure. If a solution contains an analyte of concentration CA and an 
internal standard of concentration CIS, then the signals due to the analyte, 
SA, and the internal standard, SIS, are

S k CA A A=

S k CIS IS IS=

where kA and kIS are the sensitivities for the analyte and the internal stan-
dard, respectively. Taking the ratio of the two signals gives the fundamental 
equation for an internal standardization.

S
S

k C
k C K C

C
IS

A

IS IS

A A

IS

A#= = 5.12

Because K is a ratio of the analyte’s sensitivity and the internal standard’s 
sensitivity, it is not necessary to determine independently values for either 
kA or kIS. 

Single Internal Standard

In a single-point internal standardization, we prepare a single standard that 
contains the analyte and the internal standard, and use it to determine the 
value of K in equation 5.12.
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K C
C

S
S

A

IS

std IS

A

std
#= a ak k 5.13

Having standardized the method, the analyte’s concentration is given by

C K
C

S
S

A
IS

IS

A

samp
#= a k

Example 5.7

A sixth spectrophotometric method for the quantitative analysis of Pb2+ 
in blood uses Cu2+ as an internal standard. A standard that is 1.75 ppb 
Pb2+ and 2.25 ppb Cu2+ yields a ratio of (SA/SIS)std of 2.37. A sample of 
blood spiked with the same concentration of Cu2+ gives a signal ratio, 
(SA/SIS)samp, of 1.80. What is the concentration of Pb2+ in the sample of 
blood?

Solution
Equation 5.13 allows us to calculate the value of K using the data for the 
standard

.
.

. .K C
C

S
S

1 75
2 25

2 37 3 05ppb Pb
ppb Cu

ppb Pb
ppb Cu

A

IS

std IS

A

std
2

2

2

2

# #= = =+

+

+

+

a ak k
The concentration of Pb2+, therefore, is

.

.
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1 80 1 33
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ppb PbA
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2# #= = =

+

+

+
+a k

Multiple Internal Standards

A single-point internal standardization has the same limitations as a single-
point normal calibration. To construct an internal standard calibration 
curve we prepare a series of standards, each of which contains the same 
concentration of internal standard and a different concentrations of analyte. 
Under these conditions a calibration curve of (SA/SIS)std versus CA is linear 
with a slope of K/CIS.   

Example 5.8

A seventh spectrophotometric method for the quantitative analysis of Pb2+ 

in blood gives a linear internal standards calibration curve for which

( . ) .S
S C2 11 0 006ppb

IS

A

std
A

1 #= --a k
What is the ppb Pb2+ in a sample of blood if (SA/SIS)samp is 2.80?

Solution
To determine the concentration of Pb2+ in the sample of blood we replace 
(SA/SIS)std in the calibration equation with (SA/SIS)samp and solve for CA.

Although the usual practice is to prepare 
the standards so that each contains an 
identical amount of the internal standard, 
this is not a requirement.
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.

.

.
. . .C

S
S

2 11

0 006

2 11
2 80 0 006 1 33ppb ppb PbA

IS

A

samp
1 1

2=
+

= + =- -
+

a k

The concentration of Pb2+ in the sample of blood is 1.33 ppb.                    

In some circumstances it is not possible to prepare the standards so 
that each contains the same concentration of internal standard. This is the 
case, for example, when we prepare samples by mass instead of volume. We 
can still prepare a calibration curve, however, by plotting (SA/SIS)std versus 
CA/CIS, giving a linear calibration curve with a slope of K.

5D  Linear Regression and Calibration Curves
In a single-point external standardization we determine the value of kA 
by measuring the signal for a single standard that contains a known con-
centration of analyte. Using this value of kA and our sample’s signal, we 
then calculate the concentration of analyte in our sample (see Example 
5.1). With only a single determination of kA, a quantitative analysis using 
a single-point external standardization is straightforward.

A multiple-point standardization presents a more difficult problem. 
Consider the data in Table 5.1 for a multiple-point external standardiza-
tion. What is our best estimate of the relationship between Sstd and Cstd?  It 
is tempting to treat this data as five separate single-point standardizations, 
determining kA for each standard, and reporting the mean value for the 
five trials. Despite it simplicity, this is not an appropriate way to treat a 
multiple-point standardization.

So why is it inappropriate to calculate an average value for kA using 
the data in Table 5.1? In a single-point standardization we assume that the 
reagent blank (the first row in Table 5.1) corrects for all constant sources 
of determinate error. If this is not the case, then the value of kA from a 
single-point standardization has a constant determinate error. Table 5.2 
demonstrates how an uncorrected constant error affects our determination 

Table 5.1 Data for a Hypothetical Multiple-Point External 
Standardization

Cstd (arbitrary units) Sstd (arbitrary units) kA = Sstd/ Cstd

0.000 0.00 —
0.100 12.36 123.6
0.200 24.83 124.2
0.300 35.91 119.7
0.400 48.79 122.0
0.500 60.42 122.8

mean value for kA = 122.5

You might wonder if it is possible to in-
clude an internal standard in the method 
of standard additions to correct for both 
matrix effects and uncontrolled variations 
between samples; well, the answer is yes 
as described in the paper “Standard Dilu-
tion Analysis,” the full reference for which 
is Jones, W. B.; Donati, G. L.; Calloway, 
C. P.; Jones, B. T. Anal. Chem. 2015, 87, 
2321-2327.
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of kA. The first three columns show the concentration of analyte in a set of 
standards, Cstd, the signal without any source of constant error, Sstd, and 
the actual value of kA for five standards. As we expect, the value of kA is the 
same for each standard. In the fourth column we add a constant determi-
nate error of +0.50 to the signals, (Sstd)e. The last column contains the cor-
responding apparent values of kA. Note that we obtain a different value of 
kA for each standard and that each apparent kA is greater than the true value. 

How do we find the best estimate for the relationship between the sig-
nal and the concentration of analyte in a multiple-point standardization?  
Figure 5.8 shows the data in Table 5.1 plotted as a normal calibration curve. 
Although the data certainly appear to fall along a straight line, the actual 
calibration curve is not intuitively obvious. The process of determining the 
best equation for the calibration curve is called linear regression.

5D.1  Linear Regression of Straight Line Calibration Curves

When a calibration curve is a straight-line, we represent it using the follow-
ing mathematical equation

y x0 1b b= + 5.14
where y is the analyte’s signal, Sstd, and x is the analyte’s concentration, Cstd. 
The constants b0 and b1 are, respectively, the calibration curve’s expected 
y-intercept and its expected slope. Because of uncertainty in our measure-
ments, the best we can do is to estimate values for b0 and b1, which we 
represent as b0 and b1. The goal of a linear regression analysis is to de-
termine the best estimates for b0 and b1. How we do this depends on the 
uncertainty in our measurements.

5D.2  Unweighted Linear Regression with Errors in y

The most common method for completing the linear regression for equa-
tion 5.14 makes three assumptions:  

Table 5.2 Effect of a Constant Determinate Error on the Value of kA From a Single-
Point Standardization

Cstd

Sstd 
(without constant error)

kA = Sstd/ Cstd 
(actual)

(Sstd)e
(with constant error)

kA = (Sstd)e/ Cstd 
(apparent)

1.00 1.00 1.00 1.50 1.50
2.00 2.00 1.00 2.50 1.25
3.00 3.00 1.00 3.50 1.17
4.00 4.00 1.00 4.50 1.13
5.00 5.00 1.00 5.50 1.10

mean kA (true) = 1.00 mean kA (apparent) = 1.23
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(1) 	that the difference between our experimental data and the calculated 
regression line is the result of indeterminate errors that affect y, 

(2)	 that indeterminate errors that affect y are normally distributed, and 
(3)	 that the indeterminate errors in y are independent of the value of x. 

Because we assume that the indeterminate errors are the same for all stan-
dards, each standard contributes equally in our estimate of the slope and 
the y-intercept. For this reason the result is considered an unweighted 
linear regression.

The second assumption generally is true because of the central limit the-
orem, which we considered in Chapter 4. The validity of the two remaining 
assumptions is less obvious and you should evaluate them before you accept 
the results of a linear regression. In particular the first assumption always is 
suspect because there certainly is some indeterminate error in the measure-
ment of x. When we prepare a calibration curve, however, it is not unusual 
to find that the uncertainty in the signal, Sstd, is significantly larger than the 
uncertainty in the analyte’s concentration, Cstd. In such circumstances the 
first assumption is usually reasonable.

How a Linear Regression Works

To understand the logic of a linear regression consider the example shown 
in Figure 5.9, which shows three data points and two possible straight-lines 
that might reasonably explain the data. How do we decide how well these 
straight-lines fit the data, and how do we determine the best straight-line?

Let’s focus on the solid line in Figure 5.9. The equation for this line is

y b b x0 1= +V 5.15

Figure 5.8 Normal calibration curve data for the hypothetical multiple-point 
external standardization in Table 5.1.
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where b0 and b1 are estimates for the y-intercept and the slope, and yV  is the 
predicted value of y for any value of x. Because we assume that all uncer-
tainty is the result of indeterminate errors in y, the difference between y and 
yV  for each value of x is the residual error, r, in our mathematical model.

( )r y yi i i= -V
Figure 5.10 shows the residual errors for the three data points. The smaller 
the total residual error, R, which we define as

( )R y yi i
i

n
2

1
= -

=

V/ 5.16

the better the fit between the straight-line and the data. In a linear regres-
sion analysis, we seek values of b0 and b1 that give the smallest total residual 
error. 

Figure 5.9 Illustration showing three data points and two 
possible straight-lines that might explain the data. The goal 
of a linear regression is to find the mathematical model, in 
this case a straight-line, that best explains the data.

Figure 5.10 Illustration showing the evaluation of a linear regression in which we assume that all un-
certainty is the result of indeterminate errors in y. The points in blue, yi, are the original data and the 
points in red, yi

V , are the predicted values from the regression equation, y b b x0 1= +V .The smaller 
the total residual error (equation 5.16), the better the fit of the straight-line to the data.

ŷ1
ŷ2

ŷ3

r y y1 1 1= −( ˆ )

r y y2 2 2= −( ˆ ) r y y3 3 3= −( ˆ )

ŷ b b x= +0 1

y1

y2

y3

If you are reading this aloud, you pro-

nounce yT  as y-hat.

The reason for squaring the individual 
residual errors is to prevent a positive re-
sidual error from canceling out a negative 
residual error. You have seen this before in 
the equations for the sample and popula-
tion standard deviations. You also can see 
from this equation why a linear regression 
is sometimes called the method of least 
squares.
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Finding the Slope and y-Intercept

Although we will not formally develop the mathematical equations for a 
linear regression analysis, you can find the derivations in many standard 
statistical texts.6 The resulting equation for the slope, b1, is 

b
n x x

n x y x y

i
i

n

i
i

n

i i
i

n

i
i

n

i
i

n

1
2

1 1

2
1 1 1=

-

-

= =

= = =

c m/ /
/ / /

5.17

and the equation for the y-intercept, b0, is

b n

y b xi
i

n

i
i

n

0
1

1
1=

-
= =

/ / 5.18

Although equation 5.17 and equation 5.18 appear formidable, it is neces-
sary only to evaluate the following four summations 

       x y x y xi
i

n

i
i

n

i i
i

n

i
i

n

1 1 1

2

1= = = =

/ / / /         

Many calculators, spreadsheets, and other statistical software packages are 
capable of performing a linear regression analysis based on this model. To 
save time and to avoid tedious calculations, learn how to use one of these 
tools. For illustrative purposes the necessary calculations are shown in detail 
in the following example.

Example 5.9

Using the data from Table 5.1, determine the relationship between Sstd  and 
Cstd using an unweighted linear regression.

Solution
We begin by setting up a table to help us organize the calculation.

xi yi xiyi xi
2

0.000 0.00 0.000 0.000
0.100 12.36 1.236 0.010
0.200 24.83 4.966 0.040
0.300 35.91 10.773 0.090
0.400 48.79 19.516 0.160
0.500 60.42 30.210 0.250

Adding the values in each column gives

xi
i

n

1=
/  = 1.500   yi

i

n

1=
/  = 182.31   x yi

i

n

i
1=
/  = 66.701   xi

i

n
2

1=
/  = 0.550

Substituting these values into equation 5.17 and equation 5.18, we find 
that the slope and the y-intercept are

6	 See, for example, Draper, N. R.; Smith, H. Applied Regression Analysis, 3rd ed.; Wiley: New 
York, 1998.

See Section 5F in this chapter for details 
on completing a linear regression analysis 
using Excel and R.

Equations 5.17 and 5.18 are written in 
terms of the general variables x and y. As 
you work through this example, remem-
ber that x corresponds to Cstd, and that y 
corresponds to Sstd. 
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( . ) ( . )
( . ) ( . . ) . .b 6 0 550 1 500
6 66 701 1 500 182 31 120 706 120 711 2#
# #

.=
-

-
=  

. ( . . ) . .b 6
182 31 120 706 1 500 0 209 0 211

#
.=

-
=

The relationship between the signal and the analyte, therefore, is

Sstd = 120.71 × Cstd + 0.21

For now we keep two decimal places to match the number of decimal 
places in the signal. The resulting calibration curve is shown in Figure 5.11.

Uncertainty in the Regression Analysis

As shown in Figure 5.11, because indeterminate errors in the signal, the 
regression line may not pass through the exact center of each data point. 
The cumulative deviation of our data from the regression line—that is, the 
total residual error—is proportional to the uncertainty in the regression. 
We call this uncertainty the standard deviation about the regression, 
sr, which is equal to

( )
s n

y y

2r

i i
i

n
2

1= -

-
=

V/ 5.19

where yi is the ith experimental value, and  yi
V  is the corresponding value pre-

dicted by the regression line in equation 5.15. Note that the denominator 
of equation 5.19 indicates that our regression analysis has n–2 degrees of 
freedom—we lose two degree of freedom because we use two parameters, 
the slope and the y-intercept, to calculate yi

V .

Figure 5.11 Calibration curve for the data in Table 5.1 and Example 5.9.
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Did you notice the similarity between the 
standard deviation about the regression 
(equation 5.19) and the standard devia-
tion for a sample (equation 4.1)?
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A more useful representation of the uncertainty in our regression analy-
sis is to consider the effect of indeterminate errors on the slope, b1, and the 
y-intercept, b0, which we express as standard deviations. 
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5.21

We use these standard deviations to establish confidence intervals for the 
expected slope, b1, and the expected y-intercept, b0

b tsb1 1 1!b = 5.22

b tsb0 0 0!b = 5.23
where we select t for a significance level of a and for n–2 degrees of free-
dom. Note that equation 5.22 and equation 5.23 do not contain a factor of  

n 1-^ h  because the confidence interval is based on a single regression line. 

Example 5.10

Calculate the 95% confidence intervals for the slope and y-intercept from 
Example 5.9.

Solution
We begin by calculating the standard deviation about the regression. To do 
this we must calculate the predicted signals,  yi

V , using the slope and y‑in-
tercept from Example 5.9, and the squares of the residual error, y yi i

2
-_ iV . 

Using the last standard as an example, we find that the predicted signal is

. ( . . ) .y b b x 0 209 120 706 0 500 60 5626 0 1 6 #= + = + =V
and that the square of the residual error is

( . . ) . .y y 60 42 60 562 0 2016 0 202i i

2 2 .- = - =_ iV
The following table displays the results for all six solutions.

xi yi yi
V y yi i

2
-_ iV

0.000 0.00 0.209 0.0437
0.100 12.36 12.280 0.0064
0.200 24.83 24.350 0.2304
0.300 35.91 36.421 0.2611
0.400 48.79 48.491 0.0894
0.500 60.42 60.562 0.0202

You might contrast equation 5.22 and 
equation 5.23 with equation 4.12 

X
n

ts
!n =

for the confidence interval around a sam-
ple’s mean value.

As you work through this example, re-
member that x corresponds to Cstd, and 
that y corresponds to Sstd. 
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Adding together the data in the last column gives the numerator of equa-
tion 5.19 as 0.6512; thus, the standard deviation about the regression is

. .s 6 2
0 6512 0 4035r = -

=

Next we calculate the standard deviations for the slope and the y-intercept 
using equation 5.20 and equation 5.21. The values for the summation 
terms are from in Example 5.9.
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Finally, the 95% confidence intervals (a = 0.05, 4 degrees of freedom) for 
the slope and y-intercept are

. ( . . ) . .b ts 120 706 2 78 0 965 120 7 2 7b1 1 1! ! # !b = = =

. ( . . ) . .b ts 0 209 2 78 0 292 0 2 0 8b0 0 0! ! # !b = = =

The standard deviation about the regression, sr, suggests that the signal, Sstd, 
is precise to one decimal place. For this reason we report the slope and the 
y-intercept to a single decimal place.

Minimizing Uncertainty in Calibration Curves

To minimize the uncertainty in a calibration curve’s slope and y-intercept, 
we evenly space our standards over a wide range of analyte concentrations. 
A close examination of equation 5.20 and equation 5.21 help us appreci-
ate why this is true. The denominators of both equations include the term 

x xi
2-^ h/ . The larger the value of this term—which we accomplish by 

increasing the range of x around its mean value—the smaller the standard 
deviations in the slope and the y-intercept. Furthermore, to minimize the 
uncertainty in the y‑intercept, it helps to decrease the value of the term  

xi/  in equation 5.21, which we accomplish by including standards for 
lower concentrations of the analyte.   

Obtaining the Analyte’s Concentration From a Regression Equation

Once we have our regression equation, it is easy to determine the concen-
tration of analyte in a sample. When we use a normal calibration curve, 
for example, we measure the signal for our sample, Ssamp, and calculate the 
analyte’s concentration, CA, using the regression equation.

You can find values for t in Appendix 4.
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C b
S b

A
samp

1

0
=

- 5.24

What is less obvious is how to report a confidence interval for CA that 
expresses the uncertainty in our analysis. To calculate a confidence interval 
we need to know the standard deviation in the analyte’s concentration, sCA , 
which is given by the following equation

( )
s b

s
m n b C C

S S1 1
C

r

std std
i

n
samp std

1
1

2 2

1

2

A

i

= + +
-

-

=

^
^

h
h/ 5.25

where m is the number of replicate we use to establish the sample’s average 
signal, S samp , n is the number of calibration standards, S std  is the average 
signal for the calibration standards, and Cstdi  and C std  are the individual and 
the mean concentrations for the calibration standards.7 Knowing the value 
of  sCA , the confidence interval for the analyte’s concentration is

C tsC A CA A!n =

where nCA is the expected value of CA in the absence of determinate errors, 
and with the value of t is based on the desired level of confidence and n–2 
degrees of freedom.

Example 5.11

Three replicate analyses for a sample that contains an unknown concentra-
tion of analyte, yield values for Ssamp of 29.32, 29.16 and 29.51 (arbitrary 
units). Using the results from Example 5.9 and Example 5.10, determine 
the analyte’s concentration, CA, and its 95% confidence interval.

Solution
The average signal, S samp , is 29.33, which, using equation 5.24 and the 
slope and the y-intercept from Example 5.9, gives the analyte’s concentra-
tion as

.
. . .C b

S b
120 706

29 33 0 209 0 241A
samp

1

0= = - =-

To calculate the standard deviation for the analyte’s concentration we must 
determine the values for Sstd  and for C Cstd std

2
i-^ h/ . The former is just 

the average signal for the calibration standards, which, using the data in 
Table 5.1, is 30.385. Calculating  C Cstd std

2
i-^ h/  looks formidable, but 

we can simplify its calculation by recognizing that this sum-of-squares is 
the numerator in a standard deviation equation; thus,

( ) ( ) ( )C C s n 1std std
i

n

C
2

1

2
i std #- = -

=

/

7	 (a) Miller, J. N. Analyst 1991, 116, 3–14; (b) Sharaf, M. A.; Illman, D. L.; Kowalski, B. R. Che-
mometrics, Wiley-Interscience: New York, 1986, pp. 126-127; (c) Analytical Methods Commit-
tee “Uncertainties in concentrations estimated from calibration experiments,” AMC Technical 
Brief, March 2006.

Equation 5.25 is written in terms of a cali-
bration experiment. A more general form 
of the equation, written in terms of x and 
y, is given here.
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-
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A close examination of equation 5.25 
should convince you that the uncertainty 
in CA is smallest when the sample’s av-
erage signal, S samp , is equal to the aver-
age signal for the standards, S std . When 
practical, you should plan your calibration 
curve so that Ssamp falls in the middle of 
the calibration curve.

http://www.rsc.org/images/concentrations-calibration-experiments-technical-brief-22_tcm18-214840.pdf
http://www.rsc.org/images/concentrations-calibration-experiments-technical-brief-22_tcm18-214840.pdf
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where  sCstd  is the standard deviation for the concentration of analyte in 
the calibration standards. Using the data in Table 5.1 we find that sCstd  is 
0.1871 and

( . ) .C C 0 1872 6 1 0 175std std
i

n
2 2

1
i #- = - =

=

^ ^h h/
Substituting known values into equation 5.25 gives

.
.

( . ) .
( . . ) .s 120 706

0 4035
3
1

6
1

120 706 0 175
29 33 30 385 0 0024C 2

2

A #
= + +

-
=

Finally, the 95% confidence interval for 4 degrees of freedom is

. ( . . ) . .C ts 0 241 2 78 0 0024 0 241 0 007C A CA A! ! # !n = = =

Figure 5.12 shows the calibration curve with curves showing the 95% 
confidence interval for CA.

In a standard addition we determine the analyte’s concentration by 
extrapolating the calibration curve to the x-intercept. In this case the value 
of CA is

C x b
b-interceptA
1

0= = -

and the standard deviation in CA is

( )
s b

s
n b C C

S1
C

r

std std
i

n
std

1
1

2 2

1

2

A

i

= +
-

=

^
^
h

h/
where n is the number of standard additions (including the sample with no 
added standard), and S std  is the average signal for the n standards. Because 
we determine the analyte’s concentration by extrapolation, rather than by 

You can find values for t in Appendix 4.

Figure 5.12 Example of a normal calibration curve with 
a superimposed confidence interval for the analyte’s con-
centration. The points in blue are the original data from 
Table 5.1. The black line is the normal calibration curve 
as determined in Example 5.9. The red lines show the 
95% confidence interval for CA assuming a single deter-
mination of Ssamp.
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interpolation, sCA  for the method of standard additions generally is larger 
than for a normal calibration curve.

Evaluating a Linear Regression Model

You should never accept the result of a linear regression analysis without 
evaluating the validity of the model. Perhaps the simplest way to evaluate 
a regression analysis is to examine the residual errors. As we saw earlier, the 
residual error for a single calibration standard, ri, is

( )r y yi i i= -

If the regression model is valid, then the residual errors should be distrib-
uted randomly about an average residual error of zero, with no apparent 
trend toward either smaller or larger residual errors (Figure 5.13a). Trends 
such as those in Figure 5.13b and Figure 5.13c provide evidence that at least 
one of the model’s assumptions is incorrect. For example, a trend toward 
larger residual errors at higher concentrations, Figure 5.13b, suggests that 
the indeterminate errors affecting the signal are not independent of the 
analyte’s concentration. In Figure 5.13c, the residual errors are not random, 
which suggests we cannot model the data using a straight-line relationship. 
Regression methods for the latter two cases are discussed in the following 
sections. 

Practice Exercise 5.4
Figure 5.3 shows a normal calibration curve for the quantitative analysis 
of Cu2+. The data for the calibration curve are shown here.

[Cu2+] (M) Absorbance
0 0

1.55×10–3 0.050

3.16×10–3 0.093

4.74×10–3 0.143

6.34×10–3 0.188

7.92×10–3 0.236

Complete a linear regression analysis for this calibration data, reporting 
the calibration equation and the 95% confidence interval for the slope 
and the y-intercept. If three replicate samples give an Ssamp of 0.114, what 
is the concentration of analyte in the sample and its 95% confidence 
interval?

Click here to review your answer to this exercise.
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5D.3  Weighted Linear Regression with Errors in y

Our treatment of linear regression to this point assumes that indeterminate 
errors affecting y are independent of the value of x. If this assumption is 
false, as is the case for the data in Figure 5.13b, then we must include the 
variance for each value of y into our determination of the y-intercept, bo, 
and the slope, b1; thus

b n
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i
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i
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where wi is a weighting factor that accounts for the variance in yi
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h/ 5.28

and s yi  is the standard deviation for yi. In a weighted linear regression, 
each xy-pair’s contribution to the regression line is inversely proportional 
to the precision of yi; that is, the more precise the value of y, the greater its 
contribution to the regression.

Figure 5.13 Plots of the residual error in the signal, Sstd, as a function of the concentration of analyte, Cstd, for an 
unweighted straight-line regression model. The red line shows a residual error of zero. The distribution of the residual 
errors in (a) indicates that the unweighted linear regression model is appropriate. The increase in the residual errors in 
(b) for higher concentrations of analyte, suggests that a weighted straight-line regression is more appropriate. For (c), 
the curved pattern to the residuals suggests that a straight-line model is inappropriate; linear regression using a quadratic 
model might produce a better fit.
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Practice Exercise 5.5
Using your results from Practice Exercise 5.4, construct a residual plot 
and explain its significance.

Click here to review your answer to this exercise. 
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Example 5.12

Shown here are data for an external standardization in which sstd is the 
standard deviation for three replicate determination of the signal.

Cstd (arbitrary units) Sstd (arbitrary units) sstd
0.000 0.00 0.02
0.100 12.36 0.02
0.200 24.83 0.07
0.300 35.91 0.13
0.400 48.79 0.22
0.500 60.42 0.33

Determine the calibration curve’s equation using a weighted linear regres-
sion.

Solution
We begin by setting up a table to aid in calculating the weighting factors.

xi yi syi sy
2

i

-^ h wi

0.000 0.00 0.02 2500.00 2.8339
0.100 12.36 0.02 2500.00 2.8339
0.200 24.83 0.07 204.08 0.2313
0.300 35.91 0.13 59.17 0.0671
0.400 48.79 0.22 20.66 0.0234
0.500 60.42 0.33 9.18 0.0104

Adding together the values in the forth column gives

s y
i

n
2

1
i
-

=

^ h/
which we use to calculate the individual weights in the last column. After 
we calculate the individual weights, we use a second table to aid in calculat-
ing the four summation terms in equation 5.26 and equation 5.27.

xi yi wi wi xi wi yi wi xi
2 wi xi yi

0.000 0.00 2.8339 0.0000 0.0000 0.0000 0.0000
0.100 12.36 2.8339 0.2834 35.0270 0.0283 3.5027
0.200 24.83 0.2313 0.0463 5.7432 0.0093 1.1486
0.300 35.91 0.0671 0.0201 2.4096 0.0060 0.7229
0.400 48.79 0.0234 0.0094 1.1417 0.0037 0.4567
0.500 60.42 0.0104 0.0052 0.6284 0.0026 0.3142

Adding the values in the last four columns gives

This is the same data used in Example 5.9 
with additional information about the 
standard deviations in the signal.

As you work through this example, re-
member that x corresponds to Cstd, and 
that y corresponds to Sstd. 

As a check on your calculations, the sum 
of the individual weights must equal the 
number of calibration standards, n. The 
sum of the entries in the last column is 
6.0000, so all is well.
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Substituting these values into the equation 5.26 and equation 5.27 gives 
the estimated slope and estimated y-intercept as

( . ) ( . )
( . ) ( . . ) .b 6 0 0499 0 3644
6 6 1451 0 3644 44 9499 122 9851 2#
# #

=
-

-
=

. ( . . ) .b 6
44 9499 122 985 0 3644 0 02240

#
=

-
=

The calibration equation is

. .S C122 98 0 02std std#= +

Figure 5.14 shows the calibration curve for the weighted regression and the 
calibration curve for the unweighted regression in Example 5.9. Although 
the two calibration curves are very similar, there are slight differences in the 
slope and in the y-intercept. Most notably, the y-intercept for the weighted 
linear regression is closer to the expected value of zero. Because the stan-
dard deviation for the signal, Sstd, is smaller for smaller concentrations of 
analyte, Cstd, a weighted linear regression gives more emphasis to these 
standards, allowing for a better estimate of the y-intercept.

Figure 5.14 A comparison of the unweighted and the weighted normal calibra-
tion curves. See Example 5.9 for details of the unweighted linear regression and 
Example 5.12 for details of the weighted linear regression.
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Equations for calculating confidence intervals for the slope, the y-in-
tercept, and the concentration of analyte when using a weighted linear 
regression are not as easy to define as for an unweighted linear regression.8 
The confidence interval for the analyte’s concentration, however, is at its 
optimum value when the analyte’s signal is near the weighted centroid, yc , 
of the calibration curve.

y n w x1
c i i

i

n

1
=

=

/

5D.4  Weighted Linear Regression with Errors in Both x and y

If we remove our assumption that indeterminate errors affecting a calibra-
tion curve are present only in the signal (y), then we also must factor into 
the regression model the indeterminate errors that affect the analyte’s con-
centration in the calibration standards (x). The solution for the resulting 
regression line is computationally more involved than that for either the 
unweighted or weighted regression lines.9 Although we will not consider 
the details in this textbook, you should be aware that neglecting the pres-
ence of indeterminate errors in x can bias the results of a linear regression. 

5D.5  Curvilinear and Multivariate Regression

A straight-line regression model, despite its apparent complexity, is the 
simplest functional relationship between two variables. What do we do if 
our calibration curve is curvilinear—that is, if it is a curved-line instead of 
a straight-line? One approach is to try transforming the data into a straight-
line. Logarithms, exponentials, reciprocals, square roots, and trigonometric 
functions have been used in this way. A plot of log(y) versus x is a typical 
example. Such transformations are not without complications, of which 
the most obvious is that data with a uniform variance in y will not maintain 
that uniform variance after it is transformed.

Another approach to developing a linear regression model is to fit a 
polynomial equation to the data, such as y = a + bx + cx2. You can use 
linear regression to calculate the parameters a, b, and c, although the equa-
tions are different than those for the linear regression of a straight-line.10 
If you cannot fit your data using a single polynomial equation, it may be 
possible to fit separate polynomial equations to short segments of the cali-
bration curve. The result is a single continuous calibration curve known as 
a spline function.

8	 Bonate, P. J. Anal. Chem. 1993, 65, 1367–1372.
9	 See, for example, Analytical Methods Committee, “Fitting a linear functional relationship to 

data with error on both variable,” AMC Technical Brief, March, 2002), as well as this chapter’s 
Additional Resources.

10	 For details about curvilinear regression, see (a) Sharaf, M. A.; Illman, D. L.; Kowalski, B. R. 
Chemometrics, Wiley-Interscience: New York, 1986; (b) Deming, S. N.; Morgan, S. L. Experi-
mental Design: A Chemometric Approach, Elsevier: Amsterdam, 1987.

See Figure 5.2 for an example of a calibra-
tion curve that deviates from a straight-
line for higher concentrations of analyte.

It is worth noting that the term “linear” 
does not mean a straight-line. A linear 
function may contain more than one ad-
ditive term, but each such term has one 
and only one adjustable multiplicative 
parameter. The function

y = ax + bx2

is an example of a linear function because 
the terms x and x2 each include a single 
multiplicative parameter, a and b, respec-
tively. The function

y = xb

is nonlinear because b is not a multiplica-
tive parameter; it is, instead, a power. This 
is why you can use linear regression to fit a 
polynomial equation to your data. 

Sometimes it is possible to transform a 
nonlinear function into a linear function. 
For example, taking the log of both sides 
of the nonlinear function above gives a 
linear function.

log(y) = blog(x)

http://www.rsc.org/images/brief10_tcm18-25920.pdf
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The regression models in this chapter apply only to functions that con-
tain a single independent variable, such as a signal that depends upon the 
analyte’s concentration. In the presence of an interferent, however, the signal 
may depend on the concentrations of both the analyte and the interferent

S k C k C SA A I I reag= + +

where kI is the interferent’s sensitivity and CI is the interferent’s concentra-
tion. Multivariate calibration curves are prepared using standards that con-
tain known amounts of both the analyte and the interferent, and modeled 
using multivariate regression.11

5E  Compensating for the Reagent Blank (Sreag)
Thus far in our discussion of strategies for standardizing analytical methods, 
we have assumed that a suitable reagent blank is available to correct for sig-
nals arising from sources other than the analyte. We did not, however ask 
an important question: “What constitutes an appropriate reagent blank?” 
Surprisingly, the answer is not immediately obvious.

In one study, approximately 200 analytical chemists were asked to 
evaluate a data set consisting of a normal calibration curve, a separate ana-
lyte-free blank, and three samples with different sizes, but drawn from the 
same source.12 The first two columns in Table 5.3 shows a series of external 
standards and their corresponding signals. The normal calibration curve 
for the data is

Sstd = 0.0750 × Wstd + 0.1250

where the y-intercept of 0.1250 is the calibration blank. A separate reagent 
blank gives the signal for an analyte-free sample.

11	 Beebe, K. R.; Kowalski, B. R. Anal. Chem. 1987, 59, 1007A–1017A.
12	 Cardone, M. J. Anal. Chem. 1986, 58, 433–438.

Check out this chapter’s Additional Re-
sources at the end of the textbook for 
more information about linear regression 
with errors in both variables, curvilinear 
regression, and multivariate regression.

Table 5.3  Data Used to Study the Blank in an Analytical Method
Wstd Sstd Sample Number Wsamp Ssamp

1.6667 0.2500 1 62.4746 0.8000
5.0000 0.5000 2 82.7915 1.0000
8.3333 0.7500 3 103.1085 1.2000

11.6667 0.8413
18.1600 1.4870 reagent blank 0.1000
19.9333 1.6200

Calibration equation: Sstd = 0.0750 × Wstd + 0.1250
Wstd: weight of analyte used to prepare the external standard; diluted to volume, V.
Wsamp: weight of sample used to prepare sample; diluted to volume, V.
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In working up this data, the analytical chemists used at least four dif-
ferent approaches to correct the signals: (a) ignoring both the calibration 
blank, CB, and the reagent blank, RB, which clearly is incorrect; (b) using 
the calibration blank only; (c) using the reagent blank only; and (d) using 
both the calibration blank and the reagent blank. The first four rows of 
Table 5.4 shows the equations for calculating the analyte’s concentration 
using each approach, along with the reported concentrations for the analyte 
in each sample.

That all four methods give a different result for the analyte’s concentra-
tion underscores the importance of choosing a proper blank, but does not 
tell us which blank is correct. Because all four methods fail to predict the 
same concentration of analyte for each sample, none of these blank correc-
tions properly accounts for an underlying constant source of determinate 
error.

To correct for a constant method error, a blank must account for sig-
nals from any reagents and solvents used in the analysis and any bias that 
results from interactions between the analyte and the sample’s matrix. Both 
the calibration blank and the reagent blank compensate for signals from 
reagents and solvents. Any difference in their values is due to indeterminate 
errors in preparing and analyzing the standards.

Unfortunately, neither a calibration blank nor a reagent blank can cor-
rect for a bias that results from an interaction between the analyte and the 
sample’s matrix. To be effective, the blank must include both the sample’s 
matrix and the analyte and, consequently, it must be determined using the 
sample itself. One approach is to measure the signal for samples of differ-

Table 5.4  Equations and Resulting Concentrations of Analyte for Different Approaches 
to Correcting for the Blank

Concentration of Analyte in...
Approach for Correcting  The Signal Equation Sample 1 Sample 2 Sample 3

ignore calibration and reagent blank C W
W

k W
S

A
samp

A

A samp

samp
= = 0.1707 0.1610 0.1552

use calibration blank only C W
W

k W
S CB

A
samp

A

A samp

samp
= =

-
0.1441 0.1409 0.1390

use reagent blank only C W
W

k W
S RB

A
samp

A

A samp

samp
= =

-
0.1494 0.1449 0.1422

use both calibration and reagent blank C W
W

k W
S CB RB

A
samp

A

A samp

samp
= =

- -
0.1227 0.1248 0.1261

use total Youden blank C W
W

k W
S TYB

A
samp

A

A samp

samp
= =

-
0.1313 0.1313 0.1313

CA = concentration of analyte; WA = weight of analyte; Wsamp = weight of sample; kA = slope of calibration curve (0.075; see Table 
5.3); CB = calibration blank (0.125; see Table 5.3); RB = reagent blank (0.100; see Table 5.3); TYB = total Youden blank (0.185; see 
text)

Because we are considering a matrix effect 
of sorts, you might think that the method 
of standard additions is one way to over-
come this problem. Although the method 
of standard additions can compensate for 
proportional determinate errors, it cannot 
correct for a constant determinate error; 
see Ellison, S. L. R.; Thompson, M. T. 
“Standard additions: myth and reality,” 
Analyst, 2008, 133, 992–997. 
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ent size, and to determine the regression line for a plot of Ssamp versus the 
amount of sample. The resulting y-intercept gives the signal in the absence 
of sample, and is known as the total Youden blank.13 This is the true 
blank correction. The regression line for the three samples in Table 5.3 is

Ssamp = 0.009844 × Wsamp + 0.185

giving a true blank correction of 0.185. As shown by the last row of Table 
5.4, using this value to correct Ssamp gives identical values for the concentra-
tion of analyte in all three samples.

The use of the total Youden blank is not common in analytical work, 
with most chemists relying on a calibration blank when using a calibra-
tion curve and a reagent blank when using a single-point standardization. 
As long we can ignore any constant bias due to interactions between the 
analyte and the sample’s matrix, which is often the case, the accuracy of an 
analytical method will not suffer. It is a good idea, however, to check for 
constant sources of error before relying on either a calibration blank or a 
reagent blank.

5F  Using Excel and R for a Regression Analysis
Although the calculations in this chapter are relatively straightforward—
consisting, as they do, mostly of summations—it is tedious to work through 
problems using nothing more than a calculator. Both Excel and R include 
functions for completing a linear regression analysis and for visually evalu-
ating the resulting model.

5F.1  Excel

Let’s use Excel to fit the following straight-line model to the data in Ex-
ample 5.9. 

y x0 1b b= +

Enter the data into a spreadsheet, as shown in Figure 5.15. Depending 
upon your needs, there are many ways that you can use Excel to complete 
a linear regression analysis. We will consider three approaches here.

Use Excel’s Built-In Functions

If all you need are values for the slope, b1, and the y-intercept, b0, you can 
use the following functions:

= intercept(known_y’s, known_x’s)

= slope(known_y’s, known_x’s)

13	 Cardone, M. J. Anal. Chem. 1986, 58, 438–445.

Figure 5.15 Portion of a spread-
sheet containing data from Exam-
ple 5.9 (Cstd = Cstd; Sstd = Sstd).

A B
1 Cstd Sstd
2 0.000 0.00
3 0.100 12.36
4 0.200 24.83
5 0.300 35.91
6 0.400 48.79
7 0.500 60.42
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where known_y’s is the range of cells that contain the signals (y), and 
known_x’s is the range of cells that contain the concentrations (x). For ex-
ample, if you click on an empty cell and enter

= slope(B2:B7, A2:A7)

Excel returns exact calculation for the slope (120.705 714 3).

Use Excel’s Data Analysis Tools

To obtain the slope and the y-intercept, along with additional statistical 
details, you can use the data analysis tools in the Data Analysis ToolPak. 
The ToolPak is not a standard part of Excel’s instillation. To see if you have 
access to the Analysis ToolPak on your computer, select Tools from the 
menu bar and look for the Data Analysis... option. If you do not see Data 
Analysis..., select Add-ins... from the Tools menu. Check the box for the 
Analysis ToolPak and click on OK to install them. 

Select Data Analysis... from the Tools menu, which opens the Data 
Analysis window. Scroll through the window, select Regression from the 
available options, and press OK. Place the cursor in the box for Input Y 
range and then click and drag over cells B1:B7. Place the cursor in the box 
for Input X range and click and drag over cells A1:A7. Because cells A1 and 
B1 contain labels, check the box for Labels. Select the radio button for 
Output range and click on any empty cell; this is where Excel will place the 
results. Clicking OK generates the information shown in Figure 5.16.

There are three parts to Excel’s summary of a regression analysis. At the 
top of Figure 5.16 is a table of Regression Statistics. The standard error is the 
standard deviation about the regression, sr. Also of interest is the value for 
Multiple R, which is the model’s correlation coefficient, r, a term with which 
you may already be familiar. The correlation coefficient is a measure of the 
extent to which the regression model explains the variation in y. Values of r 

Excel’s Data Analysis Toolpak is available 
for Windows. Older versions of Excel 
for Mac included the toolpak; however, 
beginning with Excel for Mac 2011, the 
toolpak no longer is available.

Once you install the Analysis ToolPak, it 
will continue to load each time you launch 
Excel.

Including labels is a good idea. Excel’s 
summary output uses the x-axis label to 
identify the slope. 

Figure 5.16 Output from Excel’s Regression command in the Analysis ToolPak. See the text for a discussion of how to 
interpret the information in these tables.

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.99987244
R Square 0.9997449
Adjusted R Square 0.99968113
Standard Error 0.40329713
Observations 6

ANOVA
df SS MS F Significance F

Regression 1 2549.727156 2549.72716 15676.296 2.4405E-08
Residual 4 0.650594286 0.16264857
Total 5 2550.37775

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 0.20857143 0.29188503 0.71456706 0.51436267 -0.60183133 1.01897419 -0.60183133 1.01897419
Cstd 120.705714 0.964064525 125.205016 2.4405E-08 118.029042 123.382387 118.029042 123.382387
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range from –1 to +1. The closer the correlation coefficient is to ±1, the bet-
ter the model is at explaining the data. A correlation coefficient of 0 means 
there is no relationship between x and y. In developing the calculations for 
linear regression, we did not consider the correlation coefficient. There is 
a reason for this. For most straight-line calibration curves the correlation 
coefficient is very close to +1, typically 0.99 or better. There is a tendency, 
however, to put too much faith in the correlation coefficient’s significance, 
and to assume that an r greater than 0.99 means the linear regression model 
is appropriate. Figure 5.17 provides a useful counterexample. Although 
the regression line has a correlation coefficient of 0.993, the data clearly is 
curvilinear. The take-home lesson here is simple: do not fall in love with 
the correlation coefficient!

The second table in Figure 5.16 is entitled ANOVA, which stands for 
analysis of variance. We will take a closer look at ANOVA in Chapter 14. 
For now, it is sufficient to understand that this part of Excel’s summary 
provides information on whether the linear regression model explains a 
significant portion of the variation in the values of y. The value for F is the 
result of an F-test of the following null and alternative hypotheses.

H0: the regression model does not explain the variation in y

HA: the regression model does explain the variation in y

The value in the column for Significance F is the probability for retaining 
the null hypothesis. In this example, the probability is 2.5×10–6%, which 
is strong evidence for accepting the regression model. As is the case with 
the correlation coefficient, a small value for the probability is a likely out-
come for any calibration curve, even when the model is inappropriate. The 
probability for retaining the null hypothesis for the data in Figure 5.17, for 
example, is 9.0×10–7%.

The third table in Figure 5.16 provides a summary of the model itself. 
The values for the model’s coefficients—the slope, b1, and the y-intercept, 
b0—are identified as intercept and with your label for the x-axis data, which 
in this example is Cstd. The standard deviations for the coefficients, sb0 and 
sb1, are in the column labeled Standard error. The column t Stat and the 
column P-value are for the following t-tests.

slope  H0: b1 = 0, HA: b1 ≠ 0

y-intercept  H0: b0 = 0, HA: b0 ≠ 0

The results of these t-tests provide convincing evidence that the slope is not 
zero, but there is no evidence that the y-intercept differs significantly from 
zero. Also shown are the 95% confidence intervals for the slope and the 
y-intercept (lower 95% and upper 95%).

Figure 5.17 Example of fitting a 
straight-line (in red) to curvilinear 
data (in blue).
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See Section 4F.2 and Section 4F.3 for a 
review of the F-test.

See Section 4F.1 for a review of the t-test.
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Program the Formulas Yourself

A third approach to completing a regression analysis is to program a spread-
sheet using Excel’s built-in formula for a summation 

=sum(first cell:last cell)
and its ability to parse mathematical equations. The resulting spreadsheet 
is shown in Figure 5.18.

Using Excel to Visualize the Regression Model

You can use Excel to examine your data and the regression line. Begin by 
plotting the data. Organize your data in two columns, placing the x values 
in the left-most column. Click and drag over the data and select Charts 
from the ribbon. Select Scatter, choosing the option without lines that 
connect the points. To add a regression line to the chart, click on the chart’s 
data and select Chart: Add Trendline... from the main men. Pick the 
straight-line model and click OK to add the line to your chart. By default, 
Excel displays the regression line from your first point to your last point. 
Figure 5.19 shows the result for the data in Figure 5.15.

Excel also will create a plot of the regression model’s residual errors. To 
create the plot, build the regression model using the Analysis ToolPak, as 
described earlier. Clicking on the option for Residual plots creates the plot 
shown in Figure 5.20.

Limitations to Using Excel for a Regression Analysis

Excel’s biggest limitation for a regression analysis is that it does not provide 
a function to calculate the uncertainty when predicting values of x. In terms 
of this chapter, Excel can not calculate the uncertainty for the analyte’s 

Figure 5.18 Spreadsheet showing the formulas for calculating the slope and the y-intercept for the data in Example 5.9. 
The shaded cells contain formulas that you must enter. Enter the formulas in cells C3 to C7, and cells D3 to D7. Next, 
enter the formulas for cells A9 to D9. Finally, enter the formulas in cells F2 and F3. When you enter a formula, Excel 
replaces it with the resulting calculation. The values in these cells should agree with the results in Example 5.9. You can 
simplify the entering of formulas by copying and pasting. For example, enter the formula in cell C2. Select Edit: Copy, 
click and drag your cursor over cells C3 to C7, and select Edit: Paste. Excel automatically updates the cell referencing.

A B C D E F

1 x y xy x^2 n = 6
2 0.000 0.00 =A2*B2 =A2^2 slope = =(F1*C8 - A8*B8)/(F1*D8-A8^2)
3 0.100 12.36 =A3*B3 =A3^2 y-int = =(B8-F2*A8)/F1
4 0.200 24.83 =A4*B4 =A4^2
5 0.300 35.91 =A5*B5 =A5^2
6 0.400 48.79 =A6*B6 =A6^2
7 0.500 60.42 =A7*B7 =A7^2
8

9 =sum(A2:A7) =sum(B2:B7) =sum(C2:C7) =sum(D2:D7) <--sums
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concentration, CA, given the signal for a sample, Ssamp. Another limitation 
is that Excel does not have a built-in function for a weighted linear regres-
sion. You can, however, program a spreadsheet to handle these calculations.

5F.2  R

Let’s use R to fit the following straight-line model to the data in Example 
5.9. 

y x0 1b b= +

Entering Data and Creating the Regression Model

To begin, create objects that contain the concentration of the standards and 
their corresponding signals.

> conc = c(0, 0.1, 0.2, 0.3, 0.4, 0.5)
> signal = c(0, 12.36, 24.83, 35.91, 48.79, 60.42)

Figure 5.19 Example of an Excel scatterplot showing 
the data and a regression line. 
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Figure 5.20 Example of Excel’s plot of a re-
gression model’s residual errors.

Practice Exercise 5.6
Use Excel to complete the 
regression analysis in Practice 
Exercise 5.4.

Click here to review your an-
swer to this exercise.
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The command for a straight-line linear regression model is

lm(y ~ x)

where y and x are the objects the objects our data. To access the results of 
the regression analysis, we assign them to an object using the following 
command

> model = lm(signal ~ conc)
where model is the name we assign to the object. 

Evaluating the Linear Regression Model

To evaluate the results of a linear regression we need to examine the data 
and the regression line, and to review a statistical summary of the model. To 
examine our data and the regression line, we use the plot command, which 
takes the following general form

plot(x, y, optional arguments to control style)

where x and y are the objects that contain our data, and the abline com-
mand

abline(object, optional arguments to control style)

where object is the object that contains the results of the linear regression. 
Entering the commands

> plot(conc, signal, pch = 19, col = “blue”, cex = 2)
> abline(model, col = “red”)

creates the plot shown in Figure 5.21. 
To review a statistical summary of the regression model, we use the 

summary command.
> summary(model)

As you might guess, lm is short for linear 
model.

You can choose any name for the object 
that contains the results of the regression 
analysis.

The name abline comes from the follow-
ing common form for writing the equa-
tion of a straight-line.

y = a + bx

where a is the y-intercept and b is the 
slope.

Figure 5.21 Example of a regression plot in R showing the data (in 
blue)and the regression line (in red). You can customize your plot 
by adjusting the plot command’s optional arguments. For example, 
the argument pch controls the symbol used for plotting points, the 
argument col allows you to select a color for the points or the line, 
and the argument cex sets the size for the points. You can use the 
command 

help(plot) 
to learn more about the options for plotting data in R.
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The resulting output, shown in Figure 5.22, contains three sections. 
The first section of R’s summary of the regression model lists the re-

sidual errors. To examine a plot of the residual errors, use the command
> plot(model, which = 1)

which produces the result shown in Figure 5.23. Note that R plots the re-
siduals against the predicted (fitted) values of y instead of against the known 
values of x. The choice of how to plot the residuals is not critical, as you can 
see by comparing Figure 5.23 to Figure 5.20. The line in Figure 5.23 is a 
smoothed fit of the residuals. 

The second section of Figure 5.22 provides the model’s coefficients—
the slope, b1, and the y-intercept, b0—along with their respective standard 
deviations (Std. Error). The column t value and the column Pr(>|t|) are for 
the following t-tests.

The reason for including the argument 
which = 1 is not immediately obvious. 
When you use R’s plot command on an 
object created by the lm command, the 
default is to create four charts summa-
rizing the model’s suitability. The first 
of these charts is the residual plot; thus, 
which = 1 limits the output to this plot.

Figure 5.22 The summary of R’s regression analysis. See the 
text for a discussion of how to interpret the information in the 
output’s three sections.

> model=lm(signal~conc)
> summary(model)

Call:
lm(formula = signal ~ conc)

Residuals:
       1                 2         3           4                5               6 
-0.20857  0.08086  0.48029 -0.51029  0.29914 -0.14143 

Coe�cients:
                   Estimate       Std. Error      t value       Pr(>|t|)    
(Intercept)   0.2086        0.2919          0.715          0.514    
conc        120.7057         0.9641      125.205         2.44e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.4033 on 4 degrees of freedom
Multiple R-Squared: 0.9997, Adjusted R-squared: 0.9997 
F-statistic: 1.568e+04 on 1 and 4 DF,  p-value: 2.441e-08 

Figure 5.23 Example showing R’s plot of a regression model’s 
residual error. 0 10 20 30 40 50 60
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slope  H0: b1 = 0, HA: b1 ≠ 0

y-intercept  H0: b0 = 0, HA: b0 ≠ 0

The results of these t-tests provide convincing evidence that the slope is not 
zero, but no evidence that the y-intercept differs significantly from zero.

The last section of the regression summary provides the standard devia-
tion about the regression (residual standard error), the square of the cor-
relation coefficient (multiple R-squared), and the result of an F-test on the 
model’s ability to explain the variation in the y values. For a discussion of 
the correlation coefficient and the F-test of a regression model, as well as 
their limitations, refer to the section on using Excel’s data analysis tools.

Predicting the Uncertainty in CA Given Ssamp

Unlike Excel, R includes a command for predicting the uncertainty in an 
analyte’s concentration, CA, given the signal for a sample, Ssamp. This com-
mand is not part of R’s standard installation. To use the command you need 
to install the “chemCal” package by entering the following command (note: 
you will need an internet connection to download the package).

> install.packages(“chemCal”)
After installing the package, you need to load the functions into R using the 
following command. (note: you will need to do this step each time you begin 
a new R session as the package does not automatically load when you start R).

> library(“chemCal”)
The command for predicting the uncertainty in CA is inverse.predict, 

which takes the following form for an unweighted linear regression

inverse.predict(object, newdata, alpha = value)

where object is the object that contains the regression model’s results, new-
data is an object that contains values for Ssamp, and value is the numerical 
value for the significance level. Let’s use this command to complete Ex-
ample 5.11. First, we create an object that contains the values of Ssamp

> sample = c(29.32, 29.16, 29.51)
and then we complete the computation using the following command

> inverse.predict(model, sample, alpha = 0.05)
 producing the result shown in Figure 5.24. The analyte’s concentration, CA, 
is given by the value $Prediction, and its standard deviation, sCA, is shown 
as $`Standard Error`. The value for $Confidence is the confidence interval, 
±tsCA, for the analyte’s concentration, and $`Confidence Limits` provides 
the lower limit and upper limit for the confidence interval for CA.

See Section 4F.1 for a review of the t-test.

See Section 4F.2 and Section 4F.3 for a 
review of the F-test.

You need to install a package once, but 
you need to load the package each time 
you plan to use it. There are ways to con-
figure R so that it automatically loads 
certain packages; see An Introduction to R 
for more information (click here to view a 
PDF version of this document). 

http://cran.r-project.org/doc/manuals/R-intro.pdf
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Using R for a Weighted Linear Regression

R’s command for an unweighted linear regression also allows for a weighted 
linear regression if we include an additional argument, weights, whose value 
is an object that contains the weights.

lm(y ~ x, weights  = object)

Let’s use this command to complete Example 5.12. First, we need to create 
an object that contains the weights, which in R are the reciprocals of the 
standard deviations in y, (syi)

–2. Using the data from Example 5.12, we enter
> syi=c(0.02, 0.02, 0.07, 0.13, 0.22, 0.33)
> w=1/syi^2

to create the object that contains the weights. The commands
> modelw = lm(signal ~ conc, weights = w)

> summary(modelw)
generate the output shown in Figure 5.25. Any difference between the 
results shown here and the results shown in Example 5.12 are the result of 
round-off errors in our earlier calculations.

Figure 5.24 Output from R’s command for predicting the ana-
lyte’s concentration, CA, from the sample’s signal, Ssamp.

> inverse.predict(model, sample, alpha = 0.05)
$Prediction
[1] 0.2412597

$`Standard Error`
[1] 0.002363588

$Con�dence
[1] 0.006562373

$`Con�dence Limits`
[1] 0.2346974 0.2478221

You may have noticed that this way of 
defining weights is different than that 
shown in equation 5.28. In deriving equa-
tions for a weighted linear regression, you 
can choose to normalize the sum of the 
weights to equal the number of points, or 
you can choose not to—the algorithm in 
R does not normalize the weights.

Practice Exercise 5.7
Use Excel to complete the regression analysis in Practice Exercise 5.4.

Click here to review your answer to this exercise.
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5G  Key Terms
calibration curve external standard internal standard

linear regression matrix matching method of standard 
additions

multiple-point 
standardization normal calibration curve primary standard

reagent grade residual error secondary standard

serial dilution single-point 
standardization

standard deviation about 
the regression

total Youden blank unweighted linear 
regression weighted linear regression

5H  Chapter Summary
In a quantitative analysis we measure a signal, Stotal, and calculate the 
amount of analyte, nA or CA, using one of the following equations.

S k n Stotal A A reag= +

S k C Stotal A A reag= +

To obtain an accurate result we must eliminate determinate errors that af-
fect the signal, Stotal, the method’s sensitivity, kA, and the signal due to the 
reagents, Sreag. 

To ensure that we accurately measure Stotal, we calibrate our equipment 
and instruments. To calibrate a balance, for example, we use a standard 
weight of known mass. The manufacturer of an instrument usually suggests 
appropriate calibration standards and calibration methods.

To standardize an analytical method we determine its sensitivity. There 
are several standardization strategies available to us, including external 
standards, the method of standard addition, and internal standards. The 

Figure 5.25 The summary of R’s regression analysis for 
a weighted linear regression. The types of information 
shown here is identical to that for the unweighted linear 
regression in Figure 5.22. 

> modelw=lm(signal~conc, weights = w)
> summary(modelw)

Call:
lm(formula = signal ~ conc, weights = w)

Residuals:
     1           2           3           4            5           6 
-2.223  2.571  3.676  -7.129  -1.413  -2.864 

Coe�cients:
                      Estimate       Std. Error    t value   Pr(>|t|)    
(Intercept)   0.04446         0.08542        0.52       0.63    
conc         122.64111         0.93590    131.04       2.03e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 4.639 on 4 degrees of freedom
Multiple R-Squared: 0.9998, Adjusted R-squared: 0.9997 
F-statistic: 1.717e+04 on 1 and 4 DF,  p-value: 2.034e-08 
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most common strategy is a multiple-point external standardization and 
a normal calibration curve. We use the method of standard additions, in 
which we add known amounts of analyte to the sample, when the sample’s 
matrix complicates the analysis. When it is difficult to reproducibly handle 
samples and standards, we may choose to add an internal standard. 

Single-point standardizations are common, but are subject to greater 
uncertainty. Whenever possible, a multiple-point standardization is pre-
ferred, with results displayed as a calibration curve. A linear regression 
analysis provides an equation for the standardization. 

A reagent blank corrects for any contribution to the signal from the 
reagents used in the analysis. The most common reagent blank is one in 
which an analyte-free sample is taken through the analysis. When a simple 
reagent blank does not compensate for all constant sources of determinate 
error, other types of blanks, such as the total Youden blank, are used.

5I  Problems

1.	 Suppose you use a serial dilution to prepare 100 mL each of a series of 
standards with concentrations of 1.00×10–5, 1.00×10–4, 1.00×10–3, 
and 1.00×10–2 M from a 0.100 M stock solution. Calculate the uncer-
tainty for each solution using a propagation of uncertainty, and com-
pare to the uncertainty if you prepare each solution as a single dilution 
of the stock solution. You will find tolerances for different types of 
volumetric glassware and digital pipets in Table 4.2 and Table 4.3. As-
sume that the uncertainty in the stock solution’s molarity is ±0.0002.

2.	 Three replicate determinations of Stotal for a standard solution that is 
10.0 ppm in analyte give values of 0.163, 0.157, and 0.161 (arbitrary 
units). The signal for the reagent blank is 0.002. Calculate the concen-
tration of analyte in a sample with a signal of 0.118.

3.	 A 10.00-g sample that contains an analyte is transferred to a 250-mL 
volumetric flask and diluted to volume. When a 10.00 mL aliquot of 
the resulting solution is diluted to 25.00 mL it gives a signal of 0.235 
(arbitrary units). A second 10.00-mL portion of the solution is spiked 
with 10.00 mL of a 1.00-ppm standard solution of the analyte and di-
luted to 25.00 mL. The signal for the spiked sample is 0.502. Calculate 
the weight percent of analyte in the original sample.

4.	 A 50.00 mL sample that contains an analyte gives a signal of 11.5 (arbi-
trary units). A second 50 mL aliquot of the sample, which is spiked with 
1.00 mL of a 10.0-ppm standard solution of the analyte, gives a signal 
of 23.1. What is the analyte’s concentration in the original sample?
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5.	 A standard additions calibration curve based on equation 5.10 places 
Sspike×(Vo + Vstd) on the y-axis and Cstd × Vstd on the x-axis. Derive 
equations for the slope and the y-intercept and explain how you can 
determine the amount of analyte in a sample from the calibration curve. 
In addition, clearly explain why you cannot plot Sspike on the y-axis and 

/ ( )C V V Vstd std o std# +" ,  on the x-axis.

6.	 A standard sample contains 10.0 mg/L of analyte and 15.0 mg/L of in-
ternal standard. Analysis of the sample gives signals for the analyte and 
the internal standard of 0.155 and 0.233 (arbitrary units), respectively. 
Sufficient internal standard is added to a sample to make its concentra-
tion 15.0 mg/L. Analysis of the sample yields signals for the analyte 
and the internal standard of 0.274 and 0.198, respectively. Report the 
analyte’s concentration in the sample.

7.	 For each of the pair of calibration curves shown in Figure 5.26, select 
the calibration curve that uses the more appropriate set of standards. 
Briefly explain the reasons for your selections. The scales for the x-axis 
and the y-axis are the same for each pair.
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Figure 5.26 Calibration curves to accom-
pany Problem 7.
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8.	 The following data are for a series of external standards of Cd2+ buffered 
to a pH of 4.6.14

[Cd2+] (nM) 15.4 30.4 44.9 59.0 72.7 86.0
Sspike (nA) 4.8 11.4 18.2 26.6 32.3 37.7

(a) Use a linear regression analysis to determine the equation for the 
calibration curve and report confidence intervals for the slope and 
the y-intercept. 

(b) Construct a plot of the residuals and comment on their significance.

At a pH of 3.7 the following data were recorded for the same set of 
external standards.

[Cd2+] (nM) 15.4 30.4 44.9 59.0 72.7 86.0

Sspike (nA) 15.0 42.7 58.5 77.0 101 118

(c) How much more or less sensitive is this method at the lower pH? 

(d) A single sample is buffered to a pH of 3.7 and analyzed for cadmium, 
yielding a signal of 66.3 nA. Report the concentration of Cd2+ in 
the sample and its 95% confidence interval.

9.	 To determine the concentration of analyte in a sample, a standard ad-
dition is performed. A 5.00-mL portion of sample is analyzed and then 
successive 0.10-mL spikes of a 600.0 ppb standard of the analyte are 
added, analyzing after each spike. The following table shows the results 
of this analysis.

Vspike (mL) 0.00 0.10 0.20 0.30

Stotal (arbitrary units) 0.119 0.231 0.339 0.442

	 Construct an appropriate standard additions calibration curve and use 
a linear regression analysis to determine the concentration of analyte in 
the original sample and its 95% confidence interval.

10.	Troost and Olavsesn investigated the application of an internal stan-
dardization to the quantitative analysis of polynuclear aromatic hy-
drocarbons.15 The following results were obtained for the analysis of 
phenanthrene using isotopically labeled phenanthrene as an internal 
standard. Each solution was analyzed twice.

CA/CIS 0.50 1.25 2.00 3.00 4.00

SA/SIS
0.514
0.522

0.993
1.024

1.486
1.471

2.044
2.080

2.342
2.550

14	 Wojciechowski, M.; Balcerzak, J. Anal. Chim. Acta 1991, 249, 433–445.
15	 Troost, J. R.; Olavesen, E. Y. Anal. Chem. 1996, 68, 708–711.
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(a)	 Determine the equation for the calibration curve using a linear 
regression, and report confidence intervals for the slope and the y-
intercept. Average the replicate signals for each standard before you 
complete the linear regression analysis.

(b) Based on your results explain why the authors concluded that the 
internal standardization was inappropriate.

11.	 In Chapter 4 we used a paired t-test to compare two analytical methods 
that were used to analyze independently a series of samples of vari-
able composition. An alternative approach is to plot the results for one 
method versus the results for the other method. If the two methods 
yield identical results, then the plot should have an expected slope, b1, 
of 1.00 and an expected y-intercept, b0, of 0.0. We can use a t-test to 
compare the slope and the y-intercept from a linear regression to the ex-
pected values. The appropriate test statistic for the y-intercept is found 
by rearranging equation 5.23.  

t s
b

s
b

exp
b b

0 0 0

0 0

b
=

-
=

	 Rearranging equation 5.22 gives the test statistic for the slope.

t s
b

s
b1

exp
b b

1 1 1

1 1

b
=

-
=

-

	 Reevaluate the data in problem 25 from Chapter 4 using the same 
significance level as in the original problem.

12.	Consider the following three data sets, each of which gives values of y 
for the same values of x.

Data Set 1 Data Set 2 Data Set 3
x y1 y2 y3

10.00 8.04 9.14 7.46
8.00 6.95 8.14 6.77

13.00 7.58 8.74 12.74
9.00 8.81 8.77 7.11

11.00 8.33 9.26 7.81
14.00 9.96 8.10 8.84

6.00 7.24 6.13 6.08
4.00 4.26 3.10 5.39

12.00 10.84 9.13 8.15
7.00 4.82 7.26 6.42
5.00 5.68 4.74 5.73

Although this is a common approach for 
comparing two analytical methods, it 
does violate one of the requirements for 
an unweighted linear regression—that in-
determinate errors affect y only. Because 
indeterminate errors affect both analytical 
methods, the result of an unweighted lin-
ear regression is biased. More specifically, 
the regression underestimates the slope, 
b1, and overestimates the y-intercept, b0. 
We can minimize the effect of this bias by 
placing the more precise analytical meth-
od on the x-axis, by using more samples 
to increase the degrees of freedom, and 
by using samples that uniformly cover the 
range of concentrations. 

For more information, see Miller, J. C.; 
Miller, J. N. Statistics for Analytical Chem-
istry, 3rd ed. Ellis Horwood PTR Pren-
tice-Hall: New York, 1993. Alternative 
approaches are found in Hartman, C.; 
Smeyers-Verbeke, J.; Penninckx, W.; Mas-
sart, D. L. Anal. Chim. Acta 1997, 338, 
19–40, and Zwanziger, H. W.; Sârbu, C. 
Anal. Chem. 1998, 70, 1277–1280.

These three data sets are taken from Ans-
combe, F. J. “Graphs in Statistical Analy-
sis,” Amer. Statis. 1973, 27, 17-21. 
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(a) 	An unweighted linear regression analysis for the three data sets gives 
nearly identical results. To three significant figures, each data set 
has a slope of 0.500 and a y-intercept of 3.00. The standard devia-
tions in the slope and the y-intercept are 0.118 and 1.125 for each 
data set. All three standard deviations about the regression are 1.24. 
Based on these results for a linear regression analysis, comment on 
the similarity of the data sets.

(b)	 Complete a linear regression analysis for each data set and verify 
that the results from part (a) are correct. Construct a residual plot 
for each data set. Do these plots change your conclusion from part 
(a)? Explain.

(c)	 Plot each data set along with the regression line and comment on 
your results.

(d)	 Data set 3 appears to contain an outlier. Remove the apparent out-
lier and reanalyze the data using a linear regression. Comment on 
your result.

(e)	 Briefly comment on the importance of visually examining your 
data.

13.	Fanke and co-workers evaluated a standard additions method for a 
voltammetric determination of Tl.16 A summary of their results is tabu-
lated in the following table.

ppm Tl 
added Instrument Response (mA)

0.000 2.53 2.50 2.70 2.63 2.70 2.80 2.52
0.387 8.42 7.96 8.54 8.18 7.70 8.34 7.98
1.851 29.65 28.70 29.05 28.30 29.20 29.95 28.95
5.734 84.8 85.6 86.0 85.2 84.2 86.4 87.8

	 Use a weighted linear regression to determine the standardization rela-
tionship for this data.

5J  Solutions to Practice Exercises
Practice Exercise 5.1
Substituting the sample’s absorbance into the calibration equation and 
solving for CA give

Ssamp = 0.114 = 29.59 M–1 × CA + 0.015

CA = 3.35 × 10-3 M

For the one-point standardization, we first solve for kA
16	 Franke, J. P.; de Zeeuw, R. A.; Hakkert, R. Anal. Chem. 1978, 50, 1374–1380.
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.
. .k C

S
3 16 10

0 0931 29 46M MA
std

std
3

1

#
= = =-

-

and then use this value of kA to solve for CA.

.
. .C k

S
29 46

0 114 3 87 10M MA
A

samp
1

3#= = =-
-

When using multiple standards, the indeterminate errors that affect the 
signal for one standard are partially compensated for by the indeterminate 
errors that affect the other standards. The standard selected for the one-
point standardization has a signal that is smaller than that predicted by 
the regression equation, which underestimates kA and overestimates CA.

Click here to return to the chapter.

Practice Exercise 5.2
We begin with equation 5.8

S k C V
V C V

V
spike A A

f

o
std

f

std= +a k
rewriting it as

V
k C V k C V

V0
f

A A o
A std

f

std#= + & 0
which is in the form of the linear equation

y = y-intercept + slope × x

where y is Sspike and x is Cstd × Vstd/Vf. The slope of the line, therefore, 
is kA, and the y-intercept is kACAVo/Vf. The x-intercept is the value of x 
when y is zero, or

V
k C V k x0 -intercept

f

A A o
A #= + " ,

x k
k C V V

V
C V-intercept

A

A A o f

f

A o=- =-

Click here to return to the chapter.

Practice Exercise 5.3
Using the calibration equation from Figure 5.7a, we find that the x-in-
tercept is

.
. .x 0 0854

0 1478 1 731intercept mL mL1- =- =--

If we plug this result into the equation for the x-intercept and solve for 
CA, we find that the concentration of Mn2+ is

( )
.

( . ) .
.V

x C
C 25 00

1 731 100 6
6 96

-intercept
mL

mL mg/L
mg/L

o

std
A

#
=- -

-
==

For Figure 7b, the x-intercept is
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.
. .intx ercept 0 0425
0 1478 3 478- mL/mg mg/mL=- =-

and the concentration of Mn2+ is
( )

.
( . / ) .

.C V
x V

25 00
3 478 50 00

6 96
-intercept

mL
mg mL mL

mg/LA
o

f #
=- =-

-
=

Click here to return to the chapter.

Practice Exercise 5.4
We begin by setting up a table to help us organize the calculation.

xi yi xiyi xi
2

0.000 0.00 0.000 0.000

1.55×10–3 0.050 7.750×10–5 2.403×10–6

3.16×10–3 0.093 2.939×10–4 9.986×10–6

4.74×10–3 0.143 6.778×10–4 2.247×10–5

6.34×10–3 0.188 1.192×10–3 4.020×10–5

7.92×10–3 0.236 1.869×10–3 6.273×10–5

Adding the values in each column gives

. .x y2 371 10 0 710i
i

n

i
i

n

1

2

1
#= =

=

-

=

/ /   

. .x y x4 110 10 1 378 10i i
i

n

i
i

n

1

3 2

1

4# #= =
=

-

=

-/ /
When we substitute these values into equation 5.17 and equation 5.18, 
we find that the slope and the y-intercept are

( . ) ( . )
( . ) ( . ) ( . ) .b 6 1 378 10 2 371 10

6 4 110 10 2 371 10 0 710 29 571 4 2 2

3 2

# # #
# # # #

=
-

-
=- -

- -

. . ( . ) .b 6
0 710 29 57 2 371 10 0 00150

2# #
=

-
=

-

and that the regression equation is

Sstd = 29.57 × Cstd + 0.0015

To calculate the 95% confidence intervals, we first need to determine 
the standard deviation about the regression. The following table helps us 
organize the calculation.

xi yi yi
V ( )y yi i

2-V
0.000 0.00 0.0015 2.250×10–6

1.55×10–3 0.050 0.0473 7.110×10–6

3.16×10–3 0.093 0.0949 3.768×10–6
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4.74×10–3 0.143 0.1417 1.791×10–6

6.34×10–3 0.188 0.1890 9.483×10–7

7.92×10–3 0.236 0.2357 9.339×10–8

Adding together the data in the last column gives the numerator of equa-
tion 5.19 as 1.596×10–5. The standard deviation about the regression, 
therefore, is

. .s 6 2
1 596 10 1 997 10r

5
3# #=

-
=

-
-

Next, we need to calculate the standard deviations for the slope and the 
y-intercept using equation 5.20 and equation 5.21.

( . ) ( . )
( . ) .s 6 1 378 10 2 371 10

6 1 997 10 0 3007b 4 2 2

3 2

1 # # #
# #

=
-

=- -

-

( . ) ( . )
( . ) ( . ) .s 6 1 378 10 2 371 10
1 997 10 1 378 10 1 441 10b 4 2 2

3 2 4
3

0 # # #
# # #

#=
-

=- -

- -
-

and use them to calculate the 95% confidence intervals for the slope 
and the y-intercept

. ( . . ) . .b ts 29 57 2 78 0 3007 29 57 0 84M Mb1 1
1 1

1! ! # !b = = = - -

. ( . ) .. .b ts 0 0015 2 78 0 00151 441 10 0 0040b0 0
3

0! ! # !#b = = =-

With an average Ssamp of 0.114, the concentration of analyte, CA, is

.
. . .C b

S b
29 57

0 114 0 0015 3 80 10M MA
samp

1

0
1

3 1#=
-

= - =-
- -

The standard deviation in CA is

.
.

( . ) ( . )
( . . )

.

s 29 57
1 997 10

3
1

6
1

29 57 4 408 10
0 114 0 1183

4 778 10

C

3

2 5

2

5

A

#
# #

#

= + +
-

=

-

-

-

and the 95% confidence interval is

. . ( . )C ts 3 80 10 2 78 4 778 10A C
3 5

A! # ! # #n= = - -" ,
. .3 880 10 0 13 10M M3 3# ! #n= - -

Click here to return to the chapter.

Practice Exercise 5.5
To create a residual plot, we need to calculate the residual error for each 
standard. The following table contains the relevant information.
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xi yi yi
V y yi i-V

0.000 0.00 0.0015 –0.0015

1.55×10–3 0.050 0.0473 0.0027

3.16×10–3 0.093 0.0949 –0.0019

4.74×10–3 0.143 0.1417 0.0013

6.34×10–3 0.188 0.1890 –0.0010

7.92×10–3 0.236 0.2357 0.0003

Figure 5.27 shows a plot of the resulting residual errors. The residual er-
rors appear random, although they do alternate in sign, and that do not 
show any significant dependence on the analyte’s concentration. Taken 
together, these observations suggest that our regression model is appro-
priate.

Click here to return to the chapter

Practice Exercise 5.6
Begin by entering the data into an Excel spreadsheet, following the format 
shown in Figure 5.15. Because Excel’s Data Analysis tools provide most of 
the information we need, we will use it here. The resulting output, which 
is shown in Figure 5.28, provides the slope and the y-intercept, along 
with their respective 95% confidence intervals. Excel does not provide a 
function for calculating the uncertainty in the analyte’s concentration, CA, 
given the signal for a sample, Ssamp. You must complete these calculations 
by hand. With an Ssamp of 0.114, we find that CA is

.
. . .C b

S b
29 59

0 114 0 0014 3 80 10M MA
samp

1

0
1

3#=
-

= - =-
-

The standard deviation in CA is

Figure 5.27 Plot of the residual errors for 
the data in Practice Exercise 5.5.
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Figure 5.28 Excel’s summary of the regression results for Practice Exercise 5.6.

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.99979366
R Square 0.99958737
Adjusted R Square0.99948421
Standard Error 0.00199602
Observations 6

ANOVA
df SS MS F Significance F

Regression 1 0.0386054 0.0386054 9689.9103 6.3858E-08
Residual 4 1.5936E-05 3.9841E-06
Total 5 0.03862133

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 0.00139272 0.00144059 0.96677158 0.38840479 -0.00260699 0.00539242 -0.00260699 0.00539242
Cstd 29.5927329 0.30062507 98.437342 6.3858E-08 28.7580639 30.4274019 28.7580639 30.4274019
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.
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( . . )

.

s 29 59
1 996 10

3
1

6
1

29 59 4 408 10
0 114 0 1183

4 772 10

C

3

2 5

2

5

A

#
# #

#

= + +
-

=

-

-

-

and the 95% confidence interval is

. . ( . )C ts 3 80 10 2 78 4 772 10A C
3 5

A! # ! # #n= = - -" ,
. .3 80 10 0 13 10M M3 3# ! #n= - -

Click here to return to the chapter

Practice Exercise 5.7
Figure 5.29 shows the R session for this problem, including loading the 
chemCal package, creating objects to hold the values for Cstd, Sstd, and 
Ssamp. Note that for Ssamp, we do not have the actual values for the three 
replicate measurements. In place of the actual measurements, we just en-
ter the average signal three times. This is okay because the calculation 
depends on the average signal and the number of replicates, and not on 
the individual measurements.

Click here to return to the chapter

> library("chemCal")
> conc=c(0, 1.55e-3, 3.16e-3, 4.74e-3, 6.34e-3, 7.92e-3)
> signal=c(0, 0.050, 0.093, 0.143, 0.188, 0.236)
> model=lm(signal~conc)
> summary(model)

Call:
lm(formula = signal ~ conc)

Residuals:
         1                       2                      3                    4                     5                     6 
-0.0013927   0.0027385  -0.0019058   0.0013377  -0.0010106   0.0002328 

Coe�cients:
                       Estimate      Std. Error     t value     Pr(>|t|)    
(Intercept)    0.001393    0.001441      0.967      0.388    
conc             29.592733    0.300625    98.437     6.39e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.001996 on 4 degrees of freedom
Multiple R-Squared: 0.9996, Adjusted R-squared: 0.9995 
F-statistic:  9690 on 1 and 4 DF,  p-value: 6.386e-08 

> samp=c(0.114, 0.114, 0.114)
> inverse.predict(model,samp,alpha=0.05)
$Prediction
[1] 0.003805234

$`Standard Error`
[1] 4.771723e-05

$Con�dence
[1] 0.0001324843

$`Con�dence Limits`
[1] 0.003672750 0.003937719

Figure 5.29 R session for completing 
Practice Exercise 5.7.
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