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Chapter 4
Most of the problems in this chapter require the calculation of a data set’s 
basic statistical characteristics, such as its mean, median, range, standard 
deviation, or variance. Although equations for these calculations are high-
lighted in the solution to the first problem, for the remaining problems, 
both here and elsewhere in this text, such values simply are provided. Be 
sure you have access to a scientific calculator, a spreadsheet program, such as 
Excel, or a statistical software program, such as R, and that you know how 
to use it to complete these most basic of statistical calculations.
1.	 The mean is obtained by adding together the mass of each quarter and 

dividing by the number of quarters; thus
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	 To find the median, we first order the data from the smallest mass to 
the largest mass

	 5.536  5.539  5.548  5.549  5.551  5.552
	 5.552  5.554  5.560  5.632  5.683  5.684
	 and then, because there is an even number of samples, take the aver-

age of the n/2 and the n/2+1 values; thus
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	 The range is the difference between the largest mass and the smallest 
mass; thus

. . .w X X 5 684 5 536 0 148 glargest smallest= - = - =

	 The standard deviation for the data is
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	 The variance is the square of the standard deviation; thus
( . ) .s 0 056 3 1 102 2 3#= = -

The variance in this case has units of g2, 
which is correct but not particularly in-
formative in an intuitive sense; for this 
reason, we rarely attach a unit to the vari-
ance. See Rumsy, D. J. Journal of Statistics 
Education 2009, 17(3) for an interesting 
argument that the variance should be ex-
cluded for summary statistics. 

As a reminder, if we have an odd number 
of data points, then the median is the mid-
dle data point in the rank-ordered data 
set, or, more generally, the value of the 
(n+1)/2 data point in the rank-ordered 
data set where n is the number of values 
in the data set.
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2.	 (a) The values are as follows:
			   mean: 243.5 mg
			   median: 243.4 mg
			   range: 37.4 mg
			   standard deviation: 11.9 mg
			   variance: 141
	 (b) We are interested in the area under a normal distribution curve 

that lies to the right of 250 mg, as shown in Figure SM4.1. Because 
this limit is greater than the mean, we need only calculate the devi-
ation, z, and look up the corresponding probability in Appendix 3; 
thus,
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	 From Appendix 3 we see that the probability is 0.2946 when z is 0.54 
and 0.2912 when z is 0.55. Interpolating between these values gives 
the probability for a z of 0.546 as

. . ( . . ) .0 2946 0 6 0 2946 0 2912 0 2926- - =

	 Based on our experimental mean and standard deviation, we expect 
that 29.3% of the tablets will contain more than 250 mg of acetamin-
ophen.

3.	 (a) The means and the standard deviations for each of the nominal 
dosages are as follows:

nominal dosage mean std. dev.
100-mg 95.56 2.16
60-mg 55.47 2.11
30-mg 26.85 1.64
10-mg 8.99 0.14

	 (b) We are interested in the area under a normal distribution curve 
that lies to the right of each tablet’s nominal dosage, as shown in 
Figure SM4.2 for tablets with a nominal dosage of 100-mg. Because 
the nominal dosage is greater than the mean, we need only calculate 
the deviation, z, for each tablet and look up the corresponding prob-
ability in Appendix 3. Using the 100-mg tablet as an example, the 
deviation is
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	 for which the probability is 0.0197; thus, we expect that 1.97% of 
tablets drawn at random from this source will exceed the nominal 
dosage. The table below summarizes results for all four sources of 
tablets.

200 220 240 260 280
mg of acetaminophen

Figure SM4.1 Normal distribution curve 
for Problem 4.2 given a population with a 
mean of 243.5 mg and a standard deviation 
of 11.9 mg; the area in blue is the proba-
bility that a random sample has more than 
250.0 mg of acetaminophen.

Figure SM4.2 Normal distribution curve 
for Problem 4.3 given a population with a 
mean of 95.56 mg and a standard deviation 
of 2.16 mg; the area in blue is the proba-
bility that a random sample has more than 
100.0 mg of morphine hydrochloride.

90 95 100
mg of morphine hydrochloride
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nominal dosage z
% exceeding 

nominal dosage
100-mg 2.06 1.97
60-mg 2.15 1.58
30-mg 1.92 2.74
10-mg 7.21 —

	 For tablets with a 10-mg nominal dosage, the value of z is sufficiently 
large that effectively no tablet is expected to exceed the nominal dos-
age.

4.	 The mean and the standard deviation for the eight spike recoveries are 
99.5% and 6.3%, respectively. As shown in Figure SM4.3, to find the 
expected percentage of spike recoveries in the range 85%–115%, we 
find the percentage of recoveries that exceed the upper limit by calcu-
lating z and using Appendix 3 to find the corresponding probability

.
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	 and the percentage of recoveries that fall below the lower limit

.
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	 Subtracting these two values from 100% gives the expected probabil-
ity of spike recoveries between 85%–115% as 

% . % . % . %100 0 695 1 07 98 2- - =

5.	 (a) Substituting known values for the mass, the gas constant, the tem-
perature, the pressure, and the volume gives the compound’s formula 
weight as
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( . ) ( . ) ( . )
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g mol K
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	 To estimate the uncertainty in the formula weight, we use a propaga-
tion of uncertainty. The relative uncertainty in the formula weight is
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	 which makes the absolute uncertainty in the formula weight
. . .u 0 0271 16 0 0 43g/mol g/molFW #= =

	 The formula weight, therefore, is 16.0±0.4 g/mol.
	 (b) To improve the uncertainty in the formula weight we need to 

identify the variables that have the greatest individual uncertainty. 
The relative uncertainties for the five measurements are

80 90 100 110 120
% recovery

Figure SM4.3 Normal distribution curve 
for Problem 4.4 given a population with a 
mean of 99.5% and a standard deviation of 
6.3%; the area in blue is the probability that 
a spike recovery is between 85% and 115%.
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			   mass: 0.002/0.118 = 0.017
			   gas constant: 0.000001/0.082056 = 1.22×10–5

			   temperature: 0.1/298.2 = 3.4×10–4

			   pressure: 0.005/0.724 = 0.007
			   volume: 0.005/0.250 = 0.020
	 Of these variables, the two with the largest relative uncertainty are the 

mass in grams and the volume in liters; these are the measurements 
where an improvement in uncertainty has the greatest impact on the 
formula weight’s uncertainty.

6.	 (a) The concentration of Mn2+ in the final solution is

0.1000 L
0.250 g

g
1000 mg

500.0 mL
10.00 mL 50.0 mg/L# # =

	 To estimate the uncertainty in concentration, we complete a prop-
agation of uncertainty. The uncertainties in the volumes are taken 
from Table 4.2; to find the uncertainty in the mass, however, we must 
account for the need to tare the balance. Taking the uncertainty in 
any single determination of mass as ±1 mg, the absolute uncertainty 
in mass is

( . ( . ) .u 0 001 0 001 0 0014 g2 2
mass= + =^ h

	 The relative uncertainty in the concentration of Mn2+, therefore, is
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	 which makes the relative uncertainty in the concentration

. ( . ) .u 0 00601 50 0 0 3ppm ppmC #= =

	 The concentration, therefore, is 50.0±0.3 ppm.
	 (b) No, we cannot improve the concentration’s uncertainty by mea-

suring the HNO3 with a pipet instead of a graduated cylinder. As 
we can see from part (a), the volume of HNO3 does not affect our 
calculation of either the concentration of Mn2+ or its uncertainty.

7.	 The weight of the sample taken is the difference between the contain-
er’s original weight and its final weight; thus, the mass is

	 mass = 23.5811 g − 22.1559 g =1.4252 g
	 and its absolute uncertainty is

( . ) ( . ) .u 0 0001 0 0001 0 00014 g2 2
mass= + =

	 The molarity of the solution is

There is no particular need to tare the bal-
ance when we weigh by difference if the 
two measurements are made at approxi-
mately the same time; this is the usual 
situation when we acquire a sample by 
this method. If the two measurements are 
separated by a signifcant period of time, 
then we should tare the balance before 
each measurement and then include the 
uncertainty of both tares when we calcu-
late the absolute uncertainty in mass.
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5
0.1000 L
1.42 2 g

121.34 g
1 mol 0.1175 M# =

	 The relative uncertainty in this concentration is
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	 and the absolute uncertainty in the concentration is

. ( . ) .u 0 00081 0 1175 0 000095M MC #= =

	 The concentration, therefore, is 0.1175±0.0001 M.
8.	 The mean value for n measurements is
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	 If we let the absolute uncertainty in the measurement of Xi equal v, 
then a propagation of uncertainty for the sum of n measurements is
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9.	 Because we are subtracting X B  from X A , a propagation of uncertain-
ty of their respective uncertainties shows us that
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10.	 To have a relative uncertainty of less than 0.1% requires that we sat-
isfy the following inequality

.
.x

0 1
0 001

mg
#

	 where x is the minimum mass we need to take. Solving for x shows 
that we need to weigh out a sample of at least 100 mg.

11.	 It is tempting to assume that using the 50-mL pipet is the best option 
because it requires only two transfers to dispense 100.0 mL, providing 
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fewer opportunities for a determinate error; although this is true with 
respect to determinate errors, our concern here is with indeterminate 
errors. We can estimate the indeterminate error for each of the three 
methods using a propagation of uncertainty. When we use a pipet 
several times, the total volume dispensed is

V Vtotal i
i

n

=/

	 for the which the uncertainty is

( ) ( ) ( ) ( ) ( )u u u u u unV V V V V V
2 2 2 2 2

total in n1 2 1g= + + + + =-

	 The uncertainties for dispensing 100.0 mL using each pipet are:

			   50-mL pipet: ( . ) .u 2 0 05 0 071 mLV
2

total = =

			   25-mL pipet: ( . ) .u 4 0 0 0 03 60 mLV
2

total = =

			   10-mL pipet: ( . ) .u 10 0 0 0 02 63 mLV
2

total = =

	 where the uncertainty for each pipet are from Table 4.2. Based on 
these calculations, if we wish to minimize uncertainty in the form 
of indeterminate errors, then the best option is to use a 25-mL pipet 
four times.

12.	 There are many ways to use the available volumetric glassware to 
accomplish this dilution. Shown here are the optimum choices for a 
one-step, a two-step, and a three-step dilution using the uncertainties 
from Table 4.2. For a one-step dilution we use a 5-mL volumetric 
pipet and a 1000-mL volumetric flask; thus
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	 For a two-step dilution we use a 50-mL volumetric pipet and a 1000-

mL volumetric flask followed by a 50-mL volumetric pipet and a 
500-mL volumetric flask; thus
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	 Finally, for a three-step dilution we use 50-mL volumetric pipet and 

a 100-mL volumetric flask, a 50-mL volumetric flask and a 500-mL 
volumetric flask, and a 50-mL volumetric pipet and a 500-mL volu-
metric flask; thus
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	 The smallest uncertainty is obtained with the two-step dilution.
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13.	 The mean is the average value. If each measurement, Xi, is changed 
by the same amount, DX, then the total change for n measurement 
is nDX and the average change is nDX/n or DX. The mean, therefore, 
changes by DX. When we calculate the standard deviation

( )s n
X X

1
i

2

= -
-

	 the important term is the summation in the numerator, which con-
sists of the difference between each measurement and the mean value

( )X Xi
2-

	 Because both Xi and X  change by DX, the value of Xi − X  becomes

( )X X X X X Xi iD D+ - + = -

	 which leaves unchanged the numerator of the equation for the stan-
dard deviation; thus, changing all measurements by DX has no effect 
on the standard deviation.

14.	 Answers to this question will vary with the object chosen. For a sim-
ple, regularly shaped object—a sphere or cube, for example—where 
you can measure the linear dimensions with a caliper, Method A 
should yield a smaller standard deviation and confidence interval 
than Method B. When using a mm ruler to measure the linear di-
mensions of a regularly shaped object, the two methods should yield 
similar results. For an object that is irregular in shape, Method B 
should yield a smaller standard deviation and confidence interval.

15.	 The isotopic abundance for 13C is 1.11%; thus, for a molecule to 
average at least one atom of 13C, the total number of carbon atoms 
must be at least

. .N p 0 0111
1 90 1n

= = =

	 which we round up to 91 atoms. The probability of finding no atoms 
of 13C in a molecule with 91 carbon atoms is given by the binomial 
distribution; thus

( , ) ! ( ) !
! ( . ) ( . ) .P 0 91 0 91 0

91 0 0111 1 0 0111 0 3620 91 0=
-

- =-

	 and 36.2% of such molecules will not contain an atom of 13C.
16.	 (a) The probability that a molecule of cholesterol has one atom of 13C 

is

( , ) ! ( ) !
! ( . ) ( . ) .P 1 27 1 27 0

27 0 0111 1 0 0111 0 2241 27 1=
-

- =-

	 or 22.4%. (b) From Example 4.10, we know that P(0,27) is 0.740. 
Because the total probability must equal one, we know that 
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( , ) . ( , ) ( , )
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	 and 3.6% of cholesterol molecules will have two or more atoms of 
13C.

17.	 The mean and the standard deviation for the eight samples are, re-
spectively, 16.883% w/w Cr and 0.0794% w/w Cr. The 95% confi-
dence interval is

. ( . ) ( . )

. . %

X
n

ts 16 883
8

2 365 0 0794

16 883 0 066 w/w Cr

! !

!

n= =

=

	 Based on this one set of experiments, and in the absence of any de-
terminate errors, there is a 95% probability that the actual %w/w Cr 
in the reference material is in the range 16.817–16.949% w/w Cr.

18.	 (a) The mean and the standard deviation for the nine samples are 36.1 
ppt and 4.15 ppt, respectively. The null hypothesis and the alternative 
hypothesis are

: :H X H X0 A !n n=

	 The test statistic is texp, for which

.
. . .t s

X n
4 15

40 0 36 1 2 829
exp

n
=
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	 The critical value for t(0.05,8) is 2.306. Because texp is greater than 
t(0.05,8), we reject the null hypothesis and accept the alternative hy-
pothesis, finding evidence, at a = 0.05, that the difference between 
X  and n is too great to be explained by random errors in the mea-

surements. 
	 (b) Because concentration, C, and signal are proportional, we can use 

concentration in place of the signal when calculating detection limits. 
For vmb we use the standard deviation for the method blank of 0.16 
ppt, and for vA we use the standard deviation of 4.15 ppt from part 
(a); thus

. ( ) ( . ). .C C z 0 16 1 203 00 3 76 pptmb mbDL v= + = + =

. ( . ) ( . ) ( . ) ( . ) .
C C z z

0 16 3 00 1 20 3 00 4 15 16 21 ppt
mb mb ALOI v v= + +

= + + =

. ( . ) ( . ) .C C 10 0 16 10 00 1 20 12 16 pptmb mbLOQ v= + = + =

19.	 The mean and the standard deviation are, respectively, 0.639 and 
0.00082. The null hypothesis and the alternative hypothesis are

: :H X H X0 A !n n=
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	 The test statistic is texp, for which

. ..
.

t s
X n 0 640 3 230 00082

0 639 7
exp

n
=

-
=

-
=

	 The critical value for t(0.01,6) is 3.707. Because texp is less than 
t(0.01,6), we retain the null hypothesis, finding no evidence, at 
a = 0.01, that there is a significant difference between X  and n. 

20.	 The mean and the standard deviation are 76.64 decays/min and 2.09 
decays/min, respectively. The null hypothesis and the alternative hy-
pothesis are

: :H X H X0 A !n n=

	 The test statistic is texp, for which

.
. . .t s

X n
2 09

77 5 76 64 12 1 43exp
n

=
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=
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	 The critical value for t(0.05,11) is 2.2035. Because texp is less than 
t(0.05,11), we retain the null hypothesis, finding no evidence, at 
a = 0.05, that there is a significant difference between X  and n. 

21.	 The mean and the standard deviation are, respectively, 5730 ppm Fe 
and 91.3 ppm Fe. In this case we need to calculate n, which is

250.0 mL

(2.6540 g sample) g sample
0.5351 g Fe

g
1 10 µg

5681 ppm Fe

6

# #
#

n=

=

	 The null hypothesis and the alternative hypothesis are

: :H X H X0 A !n n=

	 The test statistic is texp, for which

. .t s
X n 5681

91 3
5730 4 1 07exp

n
=

-
=

-
=

	 The critical value for t(0.05,3) is 3.182. Because texp is less than 
t(0.05,3), we retain the null hypothesis, finding no evidence, at 
a = 0.05, that there is a significant difference between X  and n. 

22.	 This problem involves a comparison between two sets of unpaired 
data. For the digestion with HNO3, the mean and the standard de-
viation are, respectively, 163.8 ppb Hg and 3.11 ppb Hg, and for the 
digestion with the mixture of HNO3 and HCl, the mean and the 
standard deviation are, respectively, 148.3 ppb Hg and 7.53 ppb Hg.

	 The null hypothesis and the alternative hypothesis are

: :H X X H X X0 HNO mix A HNO mix3 3 !=
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	 Before we can test these hypotheses, however, we first must determine 
if we can pool the standard deviations. To do this we use the following 
null hypothesis and alternative hypothesis

: :H s s H s s0 HNO mix HNO mixA3 3 !=

	 The test statistic is Fexp for which

( . )
( . ) .F s

s
3 11
7 53 5 86exp 2

2

2

2

HNO

mix

3

= = =

	 The critical value for F(0.05,5,4) is 9.364. Because Fexp is less than 
F(0.05,5,4), we retain the null hypothesis, finding no evidence, at 
a = 0.05, that there is a significant difference between the standard 
deviations. Pooling the standard deviations gives

( ) ( . ) ( ) ( . ) .s 5 6 2
4 3 11 5 7 53 5 98

2 2

pool= + -
+

=

	 The test statistic for the comparison of the means is texp, for which

.
. . .

t s
X X

n n
n n
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163 8 148 3

5 6
5 6 4 28

exp
pool

HNO mix

HNO mix

HNO mix3

3
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+

=
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+
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	 with nine degrees of freedom. The critical value for t(0.05,9) is 2.262. 
Because texp is greater than t(0.05,9), we reject the null hypothesis and 
accept the alternative hypothesis, finding evidence, at a = 0.05, that 
the difference between the means is significant.

23.	 This problem involves a comparison between two sets of unpaired 
data. For the samples of atmospheric origin, the mean and the stan-
dard deviation are, respectively, 2.31011 g and 0.000143 g, and for 
the samples of chemical origin, the mean and the standard deviation 
are, respectively, 2.29947 g and 0.00138 g.

	 The null hypothesis and the alternative hypothesis are

: :H X X H X X0 atm chem A atm chem!=

	 Before we can test these hypotheses, however, we first must determine 
if we can pool the standard deviations. To do this we use the following 
null hypothesis and alternative hypothesis

: :H s s H s s0 Aatm chem atm chem!=

	 The test statistic is Fexp for which

( )
( . ) ..F s

s 0 00138 97 20 000143exp 2

2

2

2

atm

chem= = =

	 The critical value for F(0.05,7,6) is 5.695. Because Fexp is less than 
F(0.05,5,6), we reject the null hypothesis and accept the alternative 
hypothesis that the standard deviations are different at a = 0.05. Be-
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cause we cannot pool the standard deviations, the test statistic, texp, 
for comparing the means is

( . ) ( . )
. . .

t

n
s

n
s

X X

7
0 000143

8
0 00138

2 31011 2 29947 21 68

exp 2 2

2 2
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-

=

+

-
=

	 The number of degrees of freedom is
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	 The critical value for t(0.05,7) is 2.365. Because texp is greater than 
t(0.05,7), we reject the null hypothesis and accept the alternative hy-
pothesis, finding evidence, at a = 0.05, that the difference between 
the means is significant. Rayleigh observed that the density of N2 
isolated from the atmosphere was significantly larger than that for 
N2 derived from chemical sources, which led him to hypothesize the 
presence of an unaccounted for gas in the atmosphere.

24.	 This problem involves a comparison between two sets of unpaired 
data. For the standard method, the mean and the standard devia-
tion are, respectively, 22.86 µL/m3 and 1.28 µL/m3, and for the new 
method, the mean and the standard deviation are, respectively, 22.51 
µL/m3 and 1.92 µL/m3.

	 The null hypothesis and the alternative hypothesis are

: :H X X H X X0 std new A std new!=

	 Before we can test these hypotheses, however, we first must determine 
if we can pool the standard deviations. To do this we use the following 
null hypothesis and alternative hypothesis

: :H s s H s s0 new A std newstd !=

	 The test statistic is Fexp for which

( )
( )

.

. .F s
s

1 28
1 92 2 25exp 2

2

2

2

std

new= = =

	 The critical value for F(0.05,6,6) is 5.820. Because Fexp is less than 
F(0.05,6,6), we retain the null hypothesis, finding no evidence, at 
a = 0.05, that there is a significant difference between the standard 
deviations. Pooling the standard deviations gives

( ) ( ) ( ) ( ). . .s 27 7
6 1 28 6 1 92 1 63

2 2

pool= + -
+

=
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	 The test statistic for the comparison of the means is texp, for which

.
. . .

t s
X X

n n
n n

1 63
22 86 22 51

7 7
7 7 0 40

exp
pool

std new

std new

std new# #

# #

=
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	 with 12 degrees of freedom. The critical value for t(0.05,12) is 2.179. 
Because texp is less than t(0.05,9), we retain the null hypothesis, find-
ing no evidence, at a = 0.05, that there is a significant difference 
between new method and the standard method.

25.	 This problem is a comparison between two sets of paired data,.The 
differences, which we define as (measured – accepted), are

	 0.0001   0.0013   –0.0003   0.0015   –0.0006
	 The mean and the standard deviation for the differences are 0.00040 

and 0.00095, respectively. The null hypothesis and the alternative 
hypothesis are

: :H Hd d0 00 A !=

	 The test statistic is texp, for which

.
. .t s

nd
0 00095

0 00040 5 0 942exp= = =

	 The critical value for t(0.05,4) is 2.776. Because texp is less than 
t(0.05,4), we retain the null hypothesis, finding no evidence, at 
a = 0.05, that the spectrometer is inaccurate.  

26.	 This problem is a comparison between two sets of paired data. The 
differences, which we define as (ascorbic acid – sodium bisulfate), are

	 15   –31   1   20   4   –52   –22   –62   –50
	 The mean and the standard deviation for the differences are –19.7 and 

30.9, respectively. The null hypothesis and the alternative hypothesis 
are

: :H Hd d0 00 A !=

	 The test statistic is texp, for which

.
. .t s

d n
30 9

19 7 9 1 91–
exp= = =

	 The critical value for t(0.10,8) is 1.860. Because texp is greater than 
t(0.10,8), we reject the null hypothesis and accept the alternative 
hypothesis, finding evidence, at a = 0.10, that the two preservatives 
do not have equivalent holding times.  

27.	 This problem is a comparison between two sets of paired data. The 
differences, which we define as (actual – found), are

	 –1.8   –1.7   0.2   –0.5   –3.6   –1.7   1.1   –1.7   0.3
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	 The mean and the standard deviation for the differences are –1.04 and 
1.44, respectively. The null hypothesis and the alternative hypothesis 
are

: :H Hd d0 00 A !=

	 The test statistic is texp, for which

.
. .t s

d n 1 04 9
1 44 2 17–

exp= = =

	 The critical value for t(0.05,8) is 2.306. Because texp is less than 
t(0.10,8), we retain the null hypothesis, finding no evidence, at 
a = 0.05, that the analysis for kaolinite is inaccurate.

28.	 This problem is a comparison between two sets of paired data. The 
differences, which we define as (electrode – spectrophotometric), are

	 0.6   –5.8   0.2   0.1   –0.5   –0.6   
	 0.1   –0.5   –0.7   –0.3   0.3   0.1

	 The mean and the standard deviation for the differences are –0.583 
and 1.693, respectively. The null hypothesis and the alternative hy-
pothesis are

: :H Hd d0 00 A !=

	 The test statistic is texp, for which

..
.

t s
d n 11 693

0 583 12 19–
exp= = =

	 The critical value for t(0.05,11) is 2.2035. Because texp is less than 
t(0.05,11), we retain the null hypothesis, finding no evidence, at 
a = 0.05, that the two methods yield different results.

29. This problem is a comparison between two sets of paired data. The 
differences, which we define as (proposed – standard), are

	 0.19   0.91   1.39   1.02   –2.38   –2.40   0.03   0.82
	 The mean and the standard deviation for the differences are –0.05 and 

1.51, respectively. The null hypothesis and the alternative hypothesis 
are

: :H Hd d0 00 A !=

	 The test statistic is texp, for which

.
. .t s

d n
1

0
51

05 8 0 09–
exp= = =

	 The critical value for t(0.05,7) is 2.365. Because texp is less than 
t(0.05,11), we retain the null hypothesis, finding no evidence, at 
a = 0.05, that the two methods yield different results. This is not a 
very satisfying result, however, because many of the individual differ-
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ences are quite large. In this case, additional work might help better 
characterize the improved method relative to the standard method.

30.	 The simplest way to organize this data is to make a table, such as the 
one shown here

sample
smallest

value

next-to-
smallest 

value

next-to-
largest 
value

largest 
value

1 21.3 21.5 23.0 23.1
2 12.9 13.5 13.9 14.2
3 15.9 16.0 17.4 17.5

 	 The only likely candidate for an outlier is the smallest value of 12.9 
for sample 2. Using Dixon’s Q-test, the test statistic, Qexp, is

. .

. . .Q X X
X X

14 2 12 9
13 5 12 9 0 462exp

arg smallest

out nearest

l est
= -

-
=

-
- =

	 which is smaller than the critical value for Q(0.05,10) of 0.466; thus, 
there is no evidence using Dixon’s Q-test at a = 0.05 to suggest that 
12.9 is outlier.

	 To use Grubb’s test we need the mean and the standard deviation for 
sample 2, which are 13.67 and 0.356, respectively. The test statistic, 
Gexp, is

.
. . .G s

X X
0 356

12 9 13 67 2 16exp
out

=
-

=
-

=

	 which is smaller than the critical value for G(0.05,10) of 2.290; thus, 
there is no evidence using Grubb’s test at a = 0.05 that 12.9 is an 
outlier.

	 To use Chauvenet’s criterion we calculate the deviation, z, for the sus-
pected outlier, assuming a normal distribution and using the sample’s 
mean and standard deviation

.
. ..

z s
X X

0 356
13 67 2 1612 9out

=
-

=
-

=

	 which, from Appendix 3, corresponds to a probability of 0.0154. 
The critical value to which we compare this is (2n)–1, or (2×10)–1 = 
0.05. Because the experimental probability of 0.0154 is smaller than 
the theoretical probability of 0.05 for 10 samples, we have evidence 
using Chauvenet’s criterion that 12.9 is an outlier.

	 At this point, you may be asking yourself what to make of these seem-
ingly contradictory results, in which two tests suggest that 12.9 is not 
an outlier and one test suggests that it is an outlier. Here it is help-
ful to keep in mind three things. First, Dixon’s Q-test and Grubb’s 
test require us to pick a particular confidence level, a, and make 
a decision based on that confidence level. When using Chauvenet’s 
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criterion, however, we do not assume a particular confidence level; 
instead, we simply evaluate the probability that the outlier belongs to 
a normal distribution described by the sample’s mean and standard 
deviation relative to a predicted probability defined by the size of 
the sample. Second, although Qexp and Gexp are not large enough to 
identify 12.9 as an outlier at a = 0.05, their respective values are not 
far removed from their respective critical values (0.462 vs. 0.466 for 
Dixon’s Q-test and 2.16 vs. 2.290 for Grubb’s test). Both tests, for 
example, identify 12.9 as an outlier at a = 0.10. Third, and finally, 
for the reasons outlined in the text, you should be cautious when 
rejecting a possible outlier based on a statistical test only. All three of 
these tests, however, suggest that we should at least take a closer look 
at the measurement that yielded 12.9 as a result.

31.	 (a) The mean is 1.940, the median is 1.942 (the average of the 31st 
and the 32nd rank ordered values rounded to four significant figures), 
and the standard deviation is 0.047.

	 (b) Figure SM4.4 shows a histogram for the 60 results using bins of 
size 0.02. The resulting distribution is a reasonably good approxima-
tion to a normal distribution, although it appears to have a slight skew 
toward smaller Cu/S ratios.

	 (c) The range X s1!  extends from a Cu/S ratio of 1.893 to 1.987. 
Of the 62 experimental results, 44 or 71% fall within this range. This 
agreement with the expected value of 68.26% for a normal distribu-
tion is reasonably good.

	 (d) For a deviation of

.
. . .z 0 047

2 000 1 940 1 28= - =

	 the probability from Appendix 3 that a Cu/S ratio is greater than 2 is 
10.03%. Of the 62 experimental results, three or 4.8% fall within this 
range. This is a little lower than expected for a normal distribution, 
but consistent with the observation from part (b) that the data are 
skewed slightly toward smaller Cu/S ratios.

	 (e) The null hypothesis and the alternative hypothesis are
: : ..H X H X 2 0002 000 <0 A=

	 Note that the alternative hypothesis here is one-tailed as we are inter-
ested only in whether the mean Cu/S ratio is significantly less than 2. 
The test statistic, texp, is

.
. . .t 0 047

1 940 2 000 10 062
exp=

-
=

	 As texp is greater than the one-tailed critical value for t(0.05,61), 
which is between 1.65 and 1.75, we reject the null hypothesis and 
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Figure SM4.4 Histogram for the data in 
problem 31. Each bar in has a width of 
0.02. For example, the bar on the far left 
includes all Cu/S ratios from 1.76 to 1.78, 
which includes the single result of 1.764.
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accept the alternative hypothesis, finding evidence that the Cu/S ratio 
is significantly less than its expected stoichiometric ratio of 2.

32.	 Although answers for this problem will vary, here are some details you 
should address in your report. The descriptive statistics for all three 
data sets are summarized in the following table.

statistic sample X sample Y sample Z
mean 24.56 27.76 23.75

median 24.55 28.00 23.52
range 1.26 4.39 5.99

std dev 0.339 1.19 1.32
variance 0.115 1.43 1.73

	 The most interesting observation from this summary is that the spread 
of values for sample X—as given by the range, the standard deviation, 
and the variance—is much smaller than that for sample Y and for 
sample Z. 

	 Outliers are one possible explanation for the difference in spread 
among these three samples. Because the number of individual results 
for each sample is greater than the largest value of n for the critical 
values included in Appendix 6 for Dixon’s Q-test and in Appendix 
7 for Grubb’s test, we will use Chauvenet’s criterion; the results are 
summarized in the following table.

statistic sample X sample Y sample Z
possible outlier 23.92 24.41 28.79

z 1.89 2.63 3.83
probability 0.0294 0.0043 0.0000713

	 For 18 samples, the critical probability is (2×18)–1 or 0.0277; thus, 
we have evidence that there is an outlier in sample Y and in sample 
Z, but not in sample X. Removing these outliers and recalculating the  
descriptive statistics gives the results in the following table.

statistic sample X sample Y sample Z
mean 24.56 27.74 23.45

median 24.55 28.00 23.48
range 1.26 3.64 1.37

std dev 0.339 0.929 0.402
variance 0.115 0.863 0.161

	 The spread for sample Y still seems large relative to sample X, but the 
spread for sample Z now seems similar to sample X. An F-test of the 
variances using the following null hypothesis and alternative hypoth-
esis

: :H s s H s s0 1 2 1 2A !=
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	 gives an Fexp of 5.340 when comparing sample Y to sample Z, and 
of 1.406 when comparing sample Z to sample X. Comparing these 
values to the critical value for F(0.05,17,17), which is between 2.230 
and 2.308, suggests that our general conclusions are reasonable.

	 The mean values for the three samples appear different from each 
other. A t-test using the following null hypothesis and alternative 
hypothesis

: :H X X H X X0 1 2 1 2A !=

	 gives a texp of 13.30 when comparing sample Y to sample X, which is 
much greater than the critical value for t(0.05,20) of 2.086. The value 
of texp when comparing sample Z to sample X is 8.810, which is much 
greater than the critical value for t(0.05,33), which is between 2.042 
and 2.086.

This process of completing multiple sig-
nificance tests is not without problems, 
for reasons we will discuss in Chapter 14 
when we consider analysis of variance.
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