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When using an analytical method we make three separate evaluations of experimental error. 
First, before beginning an analysis we evaluate potential sources of errors to ensure that they will 
not adversely effect our results.  Second, during the analysis we monitor our measurements to 
ensure that errors remain acceptable.  Finally, at the end of the analysis we evaluate the quality 
of the measurements and results, comparing them to our original design criteria. This chapter 
provides an introduction to sources of error, to evaluating errors in analytical measurements, 
and to the statistical analysis of data.
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4A Characterizing Measurements and Results
Let’s begin by choosing a simple quantitative problem requiring a single 
measurement—What is the mass of a penny? As you consider this question, 
you probably recognize that it is too broad. Are we interested in the mass of 
a United States penny or of a Canadian penny, or is the difference relevant? 
Because a penny’s composition and size may differ from country to country, 
let’s limit our problem to pennies from the United States. 

There are other concerns we might consider. For example, the United 
States Mint currently produces pennies at two locations (Figure 4.1). Be-
cause it seems unlikely that a penny’s mass depends upon where it is minted, 
we will ignore this concern. Another concern is whether the mass of a newly 
minted penny is different from the mass of a circulating penny. Because the 
answer this time is not obvious, let’s narrow our question to—What is the 
mass of a circulating United States Penny? 

A good way to begin our analysis is to examine some preliminary data. 
Table 4.1 shows masses for seven pennies from my change jar. In examin-
ing this data it is immediately apparent that our question does not have a 
simple answer. That is, we can not use the mass of a single penny to draw a 
specific conclusion about the mass of any other penny (although we might 
conclude that all pennies weigh at least 3 g). We can, however, character-
ize this data by reporting the spread of individual measurements around a 
central value. 

4A.1 Measures of Central Tendency

One way to characterize the data in Table 4.1 is to assume that the masses 
are randomly scattered around a central value that provides the best esti-
mate of a penny’s expected, or “true” mass. There are two common ways to 
estimate central tendency: the mean and the median.

Mean

The mean, X , is the numerical average for a data set. We calculate the mean 
by dividing the sum of the individual values by the size of the data set

Figure 4.1 An uncirculated 2005 
Lincoln head penny. The “D” be-
low the date indicates that this 
penny was produced at the United 
States Mint at Denver, Colorado. 
Pennies produced at the Philadel-
phia Mint do not have a letter be-
low the date. Source: United States 
Mint image (www.usmint.gov).

Table 4.1 Masses of Seven Circulating U. S. Pennies
Penny Mass (g)

1 3.080
2 3.094
3 3.107
4 3.056
5 3.112
6 3.174
7 3.198

www.usmint.gov
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where Xi is the ith measurement, and n is the size of the data set.

Example 4.1

What is the mean for the data in Table 4.1?

Solution

To calculate the mean we add together the results for all measurements

3.080 + 3.094 + 3.107 + 3.056 + 3.112 + 3.174 + 3.198 = 21.821 g

and divide by the number of measurements

X = =
21 821

7
3 117

.
.

g
g

The mean is the most common estimator of central tendency. It is not 
a robust estimator, however, because an extreme value—one much larger 
or much smaller than the remainder of the data—strongly influences the 
mean’s value.1 For example, if we mistakenly record the third penny’s mass 
as 31.07 g instead of 3.107 g, the mean changes from 3.117 g to 7.112 g!

Median

The median, X , is the middle value when we order our data from the 
smallest to the largest value. When the data set includes an odd number of 
entries, the median is the middle value. For an even number of entries, the 
median is the average of the n/2 and the (n/2) + 1 values, where n is the 
size of the data set.

Example 4.2

What is the median for the data in Table 4.1?

Solution

To determine the median we order the measurements from the smallest to 
the largest value

3.056 3.080 3.094 3.107 3.112 3.174 3.198

Because there are seven measurements, the median is the fourth value in 
the ordered data set; thus, the median is 3.107 g.

As shown by Examples 4.1 and 4.2, the mean and the median provide 
similar estimates of central tendency when all measurements are compara-

1 Rousseeuw, P. J. J. Chemom. 1991, 5, 1–20.

An estimator is robust if its value is not 
affected too much by an unusually large 
or unusually small measurement. 

When n = 5, the median is the third value 
in the ordered data set; for n = 6, the me-
dian is the average of the third and fourth 
members of the ordered data set.
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ble in magnitude. The median, however, provides a more robust estimate of 
central tendency because it is less sensitive to measurements with extreme 
values. For example, introducing the transcription error discussed earlier for 
the mean changes the median’s value from 3.107 g to 3.112 g.

4A.2 Measures of Spread

If the mean or median provides an estimate of a penny’s expected mass, 
then the spread of individual measurements provides an estimate of the 
difference in mass among pennies or of the uncertainty in measuring mass 
with a balance. Although we often define spread relative to a specific mea-
sure of central tendency, its magnitude is independent of the central value. 
Changing all measurements in the same direction, by adding or subtracting 
a constant value, changes the mean or median, but does not change the 
spread. There are three common measures of spread: the range, the standard 
deviation, and the variance.

Range

The range, w, is the difference between a data set’s largest and smallest 
values.

w = Xlargest – Xsmallest

The range provides information about the total variability in the data set, 
but does not provide any information about the distribution of individual 
values. The range for the data in Table 4.1 is

w = 3.198 g – 3.056 g = 0.142 g

StandaRd deviation

The standard deviation, s, describes the spread of a data set’s individual 
values about its mean, and is given as

s
X X

n

i
i=

−

−

∑( )2

1
4.1

where Xi is one of n individual values in the data set, and X  is the data set’s  
mean value. Frequently, the relative standard deviation, sr, is reported.

s
s
Xr =

The percent relative standard deviation, %sr, is sr × 100.

Example 4.3

What are the standard deviation, the relative standard deviation and the 
percent relative standard deviation for the data in Table 4.1?

Problem 12 at the end of the chapter asks 
you to show that this is true.
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Solution 
To calculate the standard deviation we first calculate the difference between 
each measurement and the mean value (3.117), square the resulting differ-
ences, and add them together to give the numerator of equation 4.1.

( . . ) ( . ) .
( . .
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Next, we divide this sum of the squares by n – 1, where n is the number of 
measurements, and take the square root.

s =
−

=
0 015554

7 1
0 051

.
. g

Finally, the relative standard deviation and percent relative standard devia-
tion are

sr

g
g

= =
0 051
3 117

0 016
.
.

.             %sr = (0.016) × 100% = 1.6%

It is much easier to determine the standard deviation using a scientific 
calculator with built in statistical functions.

vaRiance

Another common measure of spread is the square of the standard deviation, 
or the variance. We usually report a data set’s standard deviation, rather 
than its variance, because the mean value and the standard deviation have 
the same unit. As we will see shortly, the variance is a useful measure of 
spread because its values are additive.

Example 4.4

What is the variance for the data in Table 4.1?

Solution

The variance is the square of the absolute standard deviation. Using the 
standard deviation from Example 4.3 gives the variance as

s2 = (0.051)2 = 0.0026

Many scientific calculators include two 
keys for calculating the standard deviation. 
One key calculates the standard deviation 
for a data set of n samples drawn from 
a larger collection of possible samples, 
which corresponds to equation 4.1. The 
other key calculates the standard deviation 
for all possible samples. The later is known 
as the population’s standard deviation, 
which we will cover later in this chapter. 
Your calculator’s manual will help you de-
termine the appropriate key for each.

For obvious reasons, the numerator of 
equation 4.1 is called a sum of squares.
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4B Characterizing Experimental Errors
Characterizing the mass of a penny using the data in Table 4.1 suggests 
two questions. First, does our measure of central tendency agree with the 
penny’s expected mass? Second, why is there so much variability in the 
individual results? The first of these questions addresses the accuracy of our 
measurements, and the second asks about their precision. In this section we 
consider the types of experimental errors affecting accuracy and precision. 

4B.1 Errors Affecting Accuracy

Accuracy is a measure of how close a measure of central tendency is to the 
expected value, μ. We can express accuracy as either an absolute error, e

e X= −µ 4.2
or as a percent relative error, %er.

%e
X

r
µ

µ
=

−
×100 4.3

Although equations 4.2 and 4.3 use the mean as the measure of central 
tendency, we also can use the median.

We call errors affecting the accuracy of an analysis determinate. Al-
though there may be several different sources of determinate error, each 
source has a specific magnitude and sign. Some sources of determinate error 
are positive and others are negative, and some are larger in magnitude and 
others are smaller. The cumulative effect of these determinate errors is a net 
positive or negative error in accuracy. 

We assign determinate errors into four categories—sampling errors, 
method errors, measurement errors, and personal errors—each of which 
we consider in this section.

SaMpling eRRoRS 

A determinate sampling error occurs when our sampling strategy does 
not provide a representative sample. For example, if you monitor the envi-

Practice Exercise 4.1
The following data were collected as part of a quality control study for 
the analysis of sodium in serum; results are concentrations of Na+ in 
mmol/L.

140     143     141     137      132     157     143     149     118     145

Report the mean, the median, the range, the standard deviation, and the 
variance for this data. This data is a portion of a larger data set from An-
drew, D. F.; Herzberg, A. M. Data: A Collection of Problems for the Student 
and Research Worker, Springer-Verlag:New York, 1985, pp. 151–155.

Click here to review your answer to this exercise.

The convention for representing statistical 
parameters is to use a Roman letter for a 
value calculated from experimental data, 
and a Greek letter for the corresponding 
expected value. For example, the experi-
mentally determined mean is X , and its 
underlying expected value is μ. Likewise, 
the standard deviation by experiment is s, 
and the underlying expected value is s.

It is possible, although unlikely, that the 
positive and negative determinate errors 
will offset each other, producing a result 
with no net error in accuracy.
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ronmental quality of a lake by sampling a single location near a point source 
of pollution, such as an outlet for industrial effluent, then your results will 
be misleading. In determining the mass of a U. S. penny, our strategy for 
selecting pennies must ensure that we do not include pennies from other 
countries. 

Method eRRoRS  

In any analysis the relationship between the signal and the absolute amount 
of analyte, nA, or the analyte’s concentration, CA, is

S k n Stotal A A mb= + 4.4

S k C Stotal A A mb= + 4.5

where kA is the method’s sensitivity for the analyte and Smb is the signal 
from the method blank. A determinate method error exists when our 
value for kA or Smb is invalid. For example, a method in which Stotal is 
the mass of a precipitate assumes that k is defined by a pure precipitate 
of known stoichiometry. If this assumption is not true, then the resulting 
determination of nA or CA is inaccurate. We can minimize a determinate 
error in kA by calibrating the method. A method error due to an interferent 
in the reagents is minimized by using a proper method blank. 

MeaSuReMent eRRoRS

The manufacturers of analytical instruments and equipment, such as glass-
ware and balances, usually provide a statement of the item’s maximum 
measurement error, or tolerance. For example, a 10-mL volumetric 
pipet (Figure 4.2) has a tolerance of ±0.02 mL, which means that the pipet 
delivers an actual volume within the range 9.98–10.02 mL at a tempera-
ture of 20 oC. Although we express this tolerance as a range, the error is 
determinate; thus, the pipet’s expected volume is a fixed value within the 
stated range. 

Volumetric glassware is categorized into classes depending on its accu-
racy. Class A glassware is manufactured to comply with tolerances specified 
by agencies such as the National Institute of Standards and Technology 
or the American Society for Testing and Materials. The tolerance level for 
Class A glassware is small enough that we normally can use it without cali-
bration. The tolerance levels for Class B glassware are usually twice those 
for Class A glassware. Other types of volumetric glassware, such as beakers 
and graduated cylinders, are unsuitable for accurately measuring volumes. 
Table 4.2 provides a summary of typical measurement errors for Class A 
volumetric glassware. Tolerances for digital pipets and for balances are listed 
in Table 4.3 and Table 4.4. 

We can minimize determinate measurement errors by calibrating our 
equipment. Balances are calibrated using a reference weight whose mass can 

An awareness of potential sampling er-
rors is especially important when working 
with heterogeneous materials. Strategies 
for obtaining representative samples are 
covered in Chapter 5.

Figure 4.2 Close-up of a 10-mL 
volumetric pipet showing that it 
has a tolerance of ±0.02 mL at 
20 oC.
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Table 4.2 Measurement Errors for Type A Volumetric Glassware†

  Transfer Pipets Volumetric Flasks Burets
Capacity 

(mL)
Tolerance 

(mL)
Capacity 

(mL)
Tolerance 

(mL)
Capacity 

(mL)
Tolerance 

(mL)
1 ±0.006 5 ±0.02 10 ±0.02
2 ±0.006 10 ±0.02 25 ±0.03
5 ±0.01 25 ±0.03 50 ±0.05

10 ±0.02 50 ±0.05
20 ±0.03 100 ±0.08
25 ±0.03 250 ±0.12
50 ±0.05 500 ±0.20

100 ±0.08 1000 ±0.30
2000 ±0.50

† Tolerance values are from the ASTM E288, E542, and E694 standards.

Table 4.3 Measurement Errors for Digital Pipets†

Pipet Range Volume (mL or μL)‡ Percent Measurement Error
 10–100 μL 10 ±3.0%

50 ±1.0%
100 ±0.8%

 100–1000 μL 100 ±3.0%
500 ±1.0%

1000 ±0.6%
 1–10 mL 1 ±3.0%

5 ±0.8%
10 ±0.6%

† Values are from www.eppendorf.com. ‡ Units for volume match the units for the pipet’s range.

be traced back to the SI standard kilogram. Volumetric glassware and digi-
tal pipets can be calibrated by determining the mass of water that it delivers 
or contains and using the density of water to calculate the actual volume. It 
is never safe to assume that a calibration will remain unchanged during an 
analysis or over time. One study, for example, found that repeatedly expos-
ing volumetric glassware to higher temperatures during machine washing 
and oven drying, leads to small, but significant changes in the glassware’s 
calibration.2 Many instruments drift out of calibration over time and may 
require frequent recalibration during an analysis.

2 Castanheira, I.; Batista, E.; Valente, A.; Dias, G.; Mora, M.; Pinto, L.; Costa, H. S. Food Control 
2006, 17, 719–726.
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peRSonal eRRoRS

Finally, analytical work is always subject to personal error, including the 
ability to see a change in the color of an indicator signaling the endpoint of 
a titration; biases, such as consistently overestimating or underestimating 
the value on an instrument’s readout scale; failing to calibrate instrumenta-
tion; and misinterpreting procedural directions. You can minimize personal 
errors by taking proper care.

identifying deteRMinate eRRoRS

Determinate errors can be difficult to detect. Without knowing the ex-
pected value for an analysis, the usual situation in any analysis that matters, 
there is nothing to which we can compare our experimental result. Never-
theless, there are strategies we can use to detect determinate errors. 

The magnitude of a constant determinate error is the same for all 
samples and is more significant when analyzing smaller samples. Analyzing 
samples of different sizes, therefore, allows us to detect a constant deter-
minate error. For example, consider a quantitative analysis in which we 
separate the analyte from its matrix and determine its mass. Let’s assume 
that the sample is 50.0% w/w analyte. As shown in Table 4.5, the expected 
amount of analyte in a 0.100 g sample is 0.050 g. If the analysis has a 
positive constant determinate error of 0.010 g, then analyzing the sample 
gives 0.060 g of analyte, or a concentration of 60.0% w/w. As we increase 
the size of the sample the obtained results become closer to the expected 
result. An upward or downward trend in a graph of the analyte’s obtained 

Table 4.4 Measurement Errors for Selected Balances
Balance Capacity (g) Measurement Error

 Precisa 160M 160 ±1 mg
 A & D ER 120M 120 ±0.1 mg
 Metler H54 160 ±0.01 mg

Table 4.5 Effect of a Constant Determinate Error on the Analysis of a Sample  
Containing 50% w/w Analyte

Mass Sample  
(g)

Expected Mass  
of Analyte  

(g)

Constant Error  
(g)

Obtained Mass  
of Analyte  

(g)

Obtained Concentration  
of Analyte  

(%w/w)
0.100 0.050 0.010 0.060 60.0
0.200 0.100 0.010 0.110 55.0
0.400 0.200 0.010 0.210 52.5
0.800 0.400 0.010 0.410 51.2
1.600 0.800 0.010 0.810 50.6
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concentration versus the sample’s mass (Figure 4.3) is evidence of a constant 
determinate error.

A proportional determinate error, in which the error’s magnitude 
depends on the amount of sample, is more difficult to detect because the 
result of the analysis is independent of the amount of sample. Table 4.6 
outlines an example showing the effect of a positive proportional error of 
1.0% on the analysis of a sample that is 50.0% w/w in analyte. Regardless of 
the sample’s size, each analysis gives the same result of 50.5% w/w analyte.

One approach for detecting a proportional determinate error is to ana-
lyze a standard containing a known amount of analyte in a matrix similar 
to the samples. Standards are available from a variety of sources, such as 
the National Institute of Standards and Technology (where they are called 
standard reference materials) or the American Society for Testing and 
Materials. Table 4.7, for example, lists certified values for several analytes in 
a standard sample of Gingko bilboa leaves. Another approach is to compare 
your analysis to an analysis carried out using an independent analytical 
method known to give accurate results. If the two methods give signifi-
cantly different results, then a determinate error is the likely cause.

Figure 4.3 Effect of a constant 
determinate error on the determi-
nation of an analyte in samples of 
varying size.

Table 4.6 Effect of a Proportional Determinate Error on the Analysis of a Sample  
Containing 50% w/w Analyte

Mass Sample  
(g)

Expected Mass  
of Analyte  

(g)

Proportional 
Error  
(%)

Obtained Mass  
of Analyte  

(g)

Obtained Concentration  
of Analyte  

(%w/w)
0.100 0.050 1.00 0.0505 50.5
0.200 0.100 1.00 0.101 50.5
0.400 0.200 1.00 0.202 50.5
0.800 0.400 1.00 0.404 50.5
1.600 0.800 1.00 0.808 50.5
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Constant and proportional determinate errors have distinctly different 
sources, which we can define in terms of the relationship between the signal 
and the moles or concentration of analyte (equation 4.4 and equation 4.5). 
An invalid method blank, Smb, is a constant determinate error as it adds or 
subtracts a constant value to the signal. A poorly calibrated method, which 
yields an invalid sensitivity for the analyte, kA, will result in a proportional 
determinate error.

4B.2 Errors Affecting Precision

Precision is a measure of the spread of individual measurements or results 
about a central value, which we express as a range, a standard deviation, or 
a variance. We make a distinction between two types of precision: repeat-
ability and reproducibility. Repeatability is the precision when a single 
analyst completes the analysis in a single session using the same solutions, 
equipment, and instrumentation. Reproducibility, on the other hand, is 
the precision under any other set of conditions, including between analysts, 
or between laboratory sessions for a single analyst. Since reproducibility 
includes additional sources of variability, the reproducibility of an analysis 
cannot be better than its repeatability. 

Errors affecting precision are indeterminate and are characterized by 
random variations in their magnitude and their direction. Because they 
are random, positive and negative indeterminate errors tend to cancel, 

Table 4.7 Certified Concentrations for SRM 3246: Ginkgo biloba (Leaves)†

Class of Analyte Analyte Mass Fraction (mg/g or ng/g)
Flavonoids/Ginkgolide B Quercetin 2.69 ± 0.31
(mass fractions in mg/g) Kaempferol 3.02 ± 0.41

Isorhamnetin 0.517 ± 0.099
Total Aglycones 6.22 ± 0.77

Selected Terpenes Ginkgolide A 0.57 ± 0.28
(mass fractions in mg/g) Ginkgolide B 0.470 ± 0.090

Ginkgolide C 0.59 ± 0.22
Ginkgolide J 0.18 ± 0.10
Biloabalide 1.52 ± 0.40
Total Terpene Lactones 3.3 ± 1.1

Selected Toxic Elements Cadmium 20.8 ± 1.0
(mass fractions in ng/g) Lead 995 ± 30

Mercury 23.08 ± 0.17
† The primary purpose of this Standard Reference Material is to validate analytical methods for determining flavonoids, 

terpene lactones, and toxic elements in Ginkgo biloba or other materials with a similar matrix. Values are from the 
official Certificate of Analysis available at www.nist.gov.
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provided that enough measurements are made. In such situations the mean 
or median is largely unaffected by the precision of the analysis.

SouRceS of indeteRMinate eRRoR

We can assign indeterminate errors to several sources, including collecting 
samples, manipulating samples during the analysis, and making measure-
ments. When collecting a sample, for instance, only a small portion of 
the available material is taken, increasing the chance that small-scale inho-
mogeneities in the sample will affect repeatability. Individual pennies, for 
example, may show variations from several sources, including the manu-
facturing process, and the loss of small amounts of metal or the addition 
of dirt during circulation. These variations are sources of indeterminate 
sampling errors.

During an analysis there are many opportunities for introducing in-
determinate method errors. If our method for determining the mass of a 
penny includes directions for cleaning them of dirt, then we must be careful 
to treat each penny in the same way. Cleaning some pennies more vigor-
ously than others introduces an indeterminate method error.

Finally, any measuring device is subject to an indeterminate measure-
ment error due to limitations in reading its scale. For example, a buret 
with scale divisions every 0.1 mL has an inherent indeterminate error of 
±0.01–0.03 mL when we estimate the volume to the hundredth of a mil-
liliter (Figure 4.4). 

evaluating indeteRMinate eRRoR

An indeterminate error due to analytical equipment or instrumentation 
is generally easy to estimate by measuring the standard deviation for sev-
eral replicate measurements, or by monitoring the signal’s fluctuations over 
time in the absence of analyte (Figure 4.5) and calculating the standard 
deviation. Other sources of indeterminate error, such as treating samples 
inconsistently, are more difficult to estimate. 

30

31

Figure 4.4 Close-up of a buret 
showing the difficulty in estimat-
ing volume. With scale divisions 
every 0.1 mL it is difficult to read 
the actual volume to better than 
±0.01–0.03 mL.
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Figure 4.5 Background noise in 
an instrument showing the ran-
dom fluctuations in the signal.
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To evaluate the effect of indeterminate measurement error on our analy-
sis of the mass of a circulating United States penny, we might make several 
determinations for the mass of a single penny (Table 4.8). The standard 
deviation for our original experiment (see Table 4.1) is 0.051 g, and it is 
0.0024 g for the data in Table 4.8. The significantly better precision when 
determining the mass of a single penny suggests that the precision of our 
analysis is not limited by the balance. A more likely source of indeterminate 
error is a significant variability in the masses of individual pennies.

4B.3 Error and Uncertainty

Analytical chemists make a distinction between error and uncertainty.3 Er-
ror is the difference between a single measurement or result and its ex-
pected value. In other words, error is a measure of bias. As discussed earlier, 
we can divide error into determinate and indeterminate sources. Although 
we can correct for determinate errors, the indeterminate portion of the er-
ror remains. With statistical significance testing, which is discussed later in 
this chapter, we can determine if our results show evidence of bias.

Uncertainty expresses the range of possible values for a measurement 
or result. Note that this definition of uncertainty is not the same as our 
definition of precision. We calculate precision from our experimental data, 
providing an estimate of indeterminate errors. Uncertainty accounts for 
all errors—both determinate and indeterminate—that might reasonably 
affect a measurement or result. Although we always try to correct determi-
nate errors before beginning an analysis, the correction itself is subject to 
uncertainty.

Here is an example to help illustrate the difference between precision 
and uncertainty. Suppose you purchase a 10-mL Class A pipet from a labo-
ratory supply company and use it without any additional calibration. The 
pipet’s tolerance of ±0.02 mL is its uncertainty because your best estimate 
of its expected volume is 10.00 mL ± 0.02 mL. This uncertainty is pri-
marily determinate error. If you use the pipet to dispense several replicate 
portions of solution, the resulting standard deviation is the pipet’s precision. 
Table 4.9 shows results for ten such trials, with a mean of 9.992 mL and a 
standard deviation of ±0.006 mL. This standard deviation is the precision 
3 Ellison, S.; Wegscheider, W.; Williams, A. Anal. Chem. 1997, 69, 607A–613A.

Table 4.8 Replicate Determinations of the Mass of a 
Single Circulating U. S. Penny

Replicate Mass (g) Replicate Mass (g)
1 3.025 6 3.023
2 3.024 7 3.022
3 3.028 8 3.021
4 3.027 9 3.026
5 3.028 10 3.024

See Table 4.2 for the tolerance of a 10-mL 
class A transfer pipet.

In Section 4E we will discuss a statistical 
method—the F-test—that you can use to 
show that this difference is significant.
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with which we expect to deliver a solution using a Class A 10-mL pipet. In 
this case the published uncertainty for the pipet (±0.02 mL) is worse than 
its experimentally determined precision (±0.006 ml).  Interestingly, the 
data in Table 4.9 allows us to calibrate this specific pipet’s delivery volume 
as 9.992 mL. If we use this volume as a better estimate of this pipet’s ex-
pected volume, then its uncertainty is ±0.006 mL. As expected, calibrating 
the pipet allows us to decrease its uncertainty.4

4C Propagation of Uncertainty
Suppose you dispense 20 mL of a reagent using the Class A 10-mL pipet 
whose calibration information is given in Table 4.9. If the volume and un-
certainty for one use of the pipet is 9.992 ± 0.006 mL, what is the volume 
and uncertainty when we use the pipet twice? 

As a first guess, we might simply add together the volume and the 
maximum uncertainty for each delivery; thus

(9.992 mL + 9.992 mL) ± (0.006 mL + 0.006 mL) = 19.984 ± 0.012 mL

It is easy to appreciate that combining uncertainties in this way overesti-
mates the total uncertainty. Adding the uncertainty for the first delivery to 
that of the second delivery assumes that with each use the indeterminate 
error is in the same direction and is as large as possible. At the other ex-
treme, we might assume that the uncertainty for one delivery is positive 
and the other is negative. If we subtract the maximum uncertainties for 
each delivery,

(9.992 mL + 9.992 mL) ± (0.006 mL - 0.006 mL) = 19.984 ± 0.000 mL

we clearly underestimate the total uncertainty.
So what is the total uncertainty? From the previous discussion we know 

that the total uncertainty is greater than ±0.000 mL and less than ±0.012 
mL. To estimate the cumulative effect of multiple uncertainties we use 
a mathematical technique known as the propagation of uncertainty. Our 
treatment of the propagation of uncertainty is based on a few simple rules.

4 Kadis, R. Talanta 2004, 64, 167–173.

Table 4.9 Experimental Results for Volume Delivered by a 
10-mL Class A Transfer Pipet

Number Volume (mL) Number Volume (mL)
1 10.002 6 9.983
2 9.993 7 9.991
3 9.984 8 9.990
4 9.996 9 9.988
5 9.989 10 9.999

Although we will not derive or further 
justify these rules here, you may consult 
the additional resources at the end of this 
chapter for references that discuss the 
propagation of uncertainty in more de-
tail.
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4C.1 A Few Symbols

A propagation of uncertainty allows us to estimate the uncertainty in 
a result from the uncertainties in the measurements used to calculate the 
result. For the equations in this section we represent the result with the 
symbol R, and the measurements with the symbols A, B, and C. The cor-
responding uncertainties are uR, uA, uB, and uC. We can define the uncer-
tainties for A, B, and C using standard deviations, ranges, or tolerances (or 
any other measure of uncertainty), as long as we use the same form for all 
measurements.

4C.2 Uncertainty When Adding or Subtracting

When adding or subtracting measurements we use their absolute uncertain-
ties for a propagation of uncertainty. For example, if the result is given by 
the equation 

R = A + B - C

then the absolute uncertainty in R is

u u u uR A B C= + +2 2 2 4.6

Example 4.5

When dispensing 20 mL using a 10-mL Class A pipet, what is the total vol-
ume dispensed and what is the uncertainty in this volume? First, complete 
the calculation using the manufacturer’s tolerance of 10.00 mL ± 0.02 mL, 
and then using the calibration data from Table 4.9.

Solution

To calculate the total volume we simply add the volumes for each use of the 
pipet. When using the manufacturer’s values, the total volume is

V = + =10 00 10 00 20 00. . .mL mL mL

and when using the calibration data, the total volume is

V = + =9 992 9 992 19 984. . .mL mL mL

Using the pipet’s tolerance value as an estimate of its uncertainty gives the 
uncertainty in the total volume as

uR = + =( . ) ( . ) .0 02 0 02 0 0282 2 mL

and using the standard deviation for the data in Table 4.9 gives an uncer-
tainty of

uR = + =( . ) ( . ) .0 006 0 006 0 00852 2 mL

The requirement that we express each un-
certainty in the same way is a critically im-
portant point. Suppose you have a range 
for one measurement, such as a pipet’s 
tolerance, and standard deviations for the 
other measurements. All is not lost. There 
are ways to convert a range to an estimate 
of the standard deviation. See Appendix 2 
for more details.
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Rounding the volumes to four significant figures gives 20.00 mL ± 0.03 
mL when using the tolerance values, and 19.98 ± 0.01 mL when using 
the calibration data.

4C.3 Uncertainty When Multiplying or Dividing

When multiplying or dividing measurements we use their relative uncer-
tainties for a propagation of uncertainty. For example, if the result is given 
by the equation 

R
A B

C
=

×

then the relative uncertainty in R is

R
u

A
u

B
u

C
uR A B C

2 2 2

= + +d d dn n n 4.7

Example 4.6

The quantity of charge, Q, in coulombs passing through an electrical cir-
cuit is

Q I t= ×

where I is the current in amperes and t is the time in seconds. When a cur-
rent of 0.15 A ± 0.01 A passes through the circuit for 120  s ± 1 s, what is 
the total charge passing through the circuit and its uncertainty? 

Solution

The total charge is

Q = × =( . ) ( )0 15 120 18A s C

Since charge is the product of current and time, the relative uncertainty 
in the charge is

.

.
.

R
u

0 15
0 01

120
1

0 0672R

2 2

= + =e do n

The absolute uncertainty in the charge is

u RR = × = × =0 0672 18 0 0672 1 2. ( ) ( . ) .C C

Thus, we report the total charge as 18 C ± 1 C.
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4C.4 Uncertainty for Mixed Operations

Many chemical calculations involve a combination of adding and subtract-
ing, and multiply and dividing. As shown in the following example, we can 
calculate uncertainty by treating each operation separately using equation 
4.6 and equation 4.7 as needed.

Example 4.7

For a concentration technique the relationship between the signal and the 
an analyte’s concentration is

S k C Stotal A A mb= +

What is the analyte’s concentration, CA, and its uncertainty if Stotal is 
24.37 ± 0.02, Smb is 0.96 ± 0.02, and kA is 0.186 ± 0.003 ppm–1.

Solution

Rearranging the equation and solving for CA

C
S S

kA
total mb

A ppm
=

−
=

−
=

−

24 37 0 96
0 186

125 9
1

. .
.

. ppm

gives the analyte’s concentration as 126 ppm. To estimate the uncertainty 
in CA, we first determine the uncertainty for the numerator using equa-
tion 4.6.

uR = + =( . ) ( . ) .0 02 0 02 0 0282 2

The numerator, therefore, is 23.41 ± 0.028. To complete the calculation 
we estimate the relative uncertainty in CA using equation 4.7.

.
.

.

.
.

R
u

23 41
0 028

0 186
0 003

0 0162R

2 2

= + =e do n

The absolute uncertainty in the analyte’s concentration is

uR = × =( . ) ( . ) .125 9 0 0162 2 0ppm ppm

Thus, we report the analyte’s concentration as 126 ppm ± 2 ppm.

Practice Exercise 4.2
To prepare a standard solution of Cu2+ you obtain a piece of copper from a spool of wire. The spool’s initial 
weight is 74.2991 g and its final weight is 73.3216 g. You place the sample of wire in a 500 mL volumetric 
flask, dissolve it in 10 mL of HNO3, and dilute to volume. Next, you pipet a 1 mL portion to a 250-mL 
volumetric flask and dilute to volume. What is the final concentration of Cu2+ in mg/L, and its uncertainty? 
Assume that the uncertainty in the balance is ±0.1 mg and that you are using Class A glassware. 
Click here when to review your answer to this exercise.
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4C.5 Uncertainty for Other Mathematical Functions

Many other mathematical operations are common in analytical chemistry, 
including powers, roots, and logarithms. Table 4.10 provides equations for 
propagating uncertainty for some of these function.

Example 4.8

If the pH of a solution is 3.72 with an absolute uncertainty of ±0.03, what 
is the [H+] and its uncertainty?

Table 4.10 Propagation of Uncertainty for Selected 
Mathematical Functions†

Function uR

R kA= u kuR A=

R A B= + u u uR A B= +2 2

R A B= − u u uR A B= +2 2

R A B= × R
u

A
u

B
uR A B

2 2

= +d dn n

R
A
B

= R
u

A
u

B
uR A B

2 2

= +d dn n

R A= ln( ) u
u
AR

A=

R A= log( ) u
u
AR

A= ×0 4343.

R A= e
u
R

uR
A=

R A=10
u
R

uR
A= ×2 303.

R Ak=
u
R

k
u
A

R A= ×

†  Assumes that the measurements A and B are independent; k is a constant whose value has no 
uncertainty.
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Solution

The concentration of H+ is

 [ ] ..H MpH+ − − −= = = ×10 10 1 91 103 72 4

or 1.9 × 10–4 M to two significant figures. From Table 4.10 the relative 
uncertainty in [H+] is

u
R

uR
A= × = × =2 303 2 303 0 03 0 069. . . .

The uncertainty in the concentration, therefore, is

( . ( . ) .1 91 10 0 069 1 3 104 5× × = ×− −M) M

We report the [H+] as 1.9 (±0.1) × 10–4 M.

4C.6 Is Calculating Uncertainty Actually Useful?

Given the effort it takes to calculate uncertainty, it is worth asking whether 
such calculations are useful. The short answer is, yes. Let’s consider three 
examples of how we can use a propagation of uncertainty to help guide the 
development of an analytical method.

One reason for completing a propagation of uncertainty is that we can 
compare our estimate of the uncertainty to that obtained experimentally. 
For example, to determine the mass of a penny we measure mass twice—
once to tare the balance at 0.000 g, and once to measure the penny’s mass. 
If the uncertainty for measuring mass is ±0.001 g, then we estimate the 
uncertainty in measuring mass as

umass = + =( . ) ( . ) .0 001 0 001 0 00142 2 g

Writing this result as 

1.9 (±0.1) × 10–4 M 

is equivalent to

1.9 × 10–4 M ± 0.1 × 10–4 M

Practice Exercise 4.3
A solution of copper ions is blue because it absorbs yellow and orange 
light. Absorbance, A, is defined as 

A
P
P

=−log
o

where Po is the power of radiation from the light source and P is the 
power after it passes through the solution. What is the absorbance if Po 
is 3.80×102 and P is 1.50×102? If the uncertainty in measuring Po and P 
is 15, what is the uncertainty in the absorbance?

Click here to review your answer to this exercise.
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If we measure a penny’s mass several times and obtain a standard deviation 
of ±0.050 g, then we have evidence that our measurement process is out of 
control. Knowing this, we can identify and correct the problem.

We also can use propagation of uncertainty to help us decide how to 
improve an analytical method’s uncertainty. In Example 4.7, for instance, 
we calculated an analyte’s concentration as 126 ppm ± 2 ppm, which is a 
percent uncertainty of 1.6%. Suppose we want to decrease the percent un-
certainty to no more than 0.8%. How might we accomplish this? Looking 
back at the calculation, we see that the concentration’s relative uncertainty  
is determined by the relative uncertainty in the measured signal (corrected 
for the reagent blank)

0 028
23 41

0 0012
.

.
.= or 0.12%

and the relative uncertainty in the method’s sensitivity, kA,

0 003
0 186

0 016
1

1

.

.
.

ppm
ppm

or 1.6%
−

−
=

Of these terms, the uncertainty in the method’s sensitivity dominates the 
overall uncertainty. Improving the signal’s uncertainty will not improve 
the overall uncertainty of the analysis. To achieve an overall uncertainty of 
0.8% we must improve the uncertainty in kA to ±0.0015 ppm–1. 

Finally, we can use a propagation of uncertainty to determine which of 
several procedures provides the smallest uncertainty. When diluting a stock 
solution there are usually several different combinations of volumetric 
glassware that will give the same final concentration. For instance, we can 
dilute a stock solution by a factor of 10 using a 10-mL pipet and a 100-mL 
volumetric flask, or by using a 25-mL pipet and a 250-mL volumetric flask. 
We also can accomplish the same dilution in two steps using a 50-mL pipet 
and 100-mL volumetric flask for the first dilution, and a 10-mL pipet and 
a 50-mL volumetric flask for the second dilution. The overall uncertainty in 
the final concentration—and, therefore, the best option for the dilution—
depends on the uncertainty of the transfer pipets and volumetric flasks. As 
shown below, we can use the tolerance values for volumetric glassware to 
determine the optimum dilution strategy.5

5 Lam, R. B.; Isenhour, T. L. Anal. Chem. 1980, 52, 1158–1161.

Practice Exercise 4.4
Verify that an uncertainty of ±0.0015 ppm–1 for kA is the correct result.
Click here to review your answer to this exercise.

2
100 1 6

ppm

126 ppm
× = . %
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Example 4.9

Which of the following methods for preparing a 0.0010 M solution from 
a 1.0 M stock solution provides the smallest overall uncertainty?

    (a) A one-step dilution using a 1-mL pipet and a 1000-mL volumetric 
flask.

    (b) A two-step dilution using a 20-mL pipet and a 1000-mL volumetric 
flask for the first dilution, and a 25-mL pipet and a 500-mL volumet-
ric flask for the second dilution.

Solution

The dilution calculations for case (a) and case (b) are

case (a): 1.0 M
1.000 mL

mL
M

c

× =
1000 0

0 0010
.

.

aase (b): 1.0 M
20.00 mL

mL
mL

× ×
1000 0

25 00
5.

.
000 0

0 0010
.

.
mL

M=

Using tolerance values from Table 4.2, the relative uncertainty for case (a) 
is

.

.
.

.
.

R
u

1 000
0 006

1000 0
0 3

0 006R

2 2

= + =d dn n

and for case (b) the relative uncertainty is

R
uR =

20 . 00
0 . 03d n

2

+
1000 . 0

0 . 3d n
2

+
25 . 00
0 . 03e o

2

+
500 . 0

0 . 2e o
2

= 0 . 002

Since the relative uncertainty for case (b) is less than that for case (a), the 
two-step dilution provides the smallest overall uncertainty. 

4D The Distribution of Measurements and Results
Earlier we reported results for a determination of the mass of a circulating 
United States penny, obtaining a mean of 3.117 g and a standard devia-
tion of 0.051 g. Table 4.11 shows results for a second, independent deter-
mination of a penny’s mass, as well as the data from the first experiment. 
Although the means and standard deviations for the two experiments are 
similar, they are not identical. The difference between the experiments 
raises some interesting questions. Are the results for one experiment bet-
ter than those for the other experiment? Do the two experiments provide 
equivalent estimates for the mean and the standard deviation? What is our 
best estimate of a penny’s expected mass? To answers these questions we 
need to understand how to predict the properties of all pennies by analyz-
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ing a small sample of pennies.  We begin by making a distinction between 
populations and samples.

4D.1 Populations and Samples

A population is the set of all objects in the system we are investigating. For 
our experiment, the population is all United States pennies in circulation. 
This population is so large that we cannot analyze every member of the 
population. Instead, we select and analyze a limited subset, or sample of the 
population. The data in Table 4.11, for example, are results for two samples 
drawn from the larger population of all circulating United States pennies.

4D.2 Probability Distributions for Populations

Table 4.11 provides the mean and standard deviation for two samples of 
circulating United States pennies. What do these samples tell us about the 
population of pennies? What is the largest possible mass for a penny? What 
is the smallest possible mass? Are all masses equally probable, or are some 
masses more common? 

To answer these questions we need to know something about how the 
masses of individual pennies are distributed around the population’s aver-
age mass. We represent the distribution of a population by plotting the 
probability or frequency of obtaining an specific result as a function of the 
possible results. Such plots are called probability distributions. 

There are many possible probability distributions. In fact, the probabil-
ity distribution can take any shape depending on the nature of the popula-
tion. Fortunately many chemical systems display one of several common 
probability distributions. Two of these distributions, the binomial distribu-
tion and the normal distribution, are discussed in this section.

Table 4.11 Results for Two Determinations of the Mass of 
a Circulating United States Penny

First Experiment Second Experiment
Penny Mass (g) Penny Mass (g)

1 3.080 1 3.052
2 3.094 2 3.141
3 3.107 3 3.083
4 3.056 4 3.083
5 3.112 5 3.048
6 3.174
7 3.198

X 3.117 3.081

s 0.051 0.037
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BinoMial diStRiBution

The binomial distribution describes a population in which the result is 
the number of times a particular event occurs during a fixed number of 
trials. Mathematically, the binomial distribution is 

P X N
N

X N X
p pX N X( , )

!
!( )!

( )=
−

× × − −1

where P(X , N) is the probability that an event occurs X times during N trials, 
and p is the event’s probability for a single trial. If you flip a coin five times, 
P(2,5) is the probability that the coin will turn up “heads” exactly twice.

A binomial distribution has well-defined measures of central tendency 
and spread. The expected mean value is

µ = Np

and the expected spread is given by the variance

σ2 1= −Np p( )

or the standard deviation.

σ= −Np p( )1

 The binomial distribution describes a population whose members can 
take on only specific, discrete values. When you roll a die, for example, 
the possible values are 1, 2, 3, 4, 5, or 6. A roll of 3.45 is not possible. As 
shown in Example 4.10, one example of a chemical system obeying the 
binomial distribution is the probability of finding a particular isotope in a 
molecule.

Example 4.10

Carbon has two stable, non-radioactive isotopes, 12C and 13C, with rela-
tive isotopic abundances of, respectively, 98.89% and 1.11%. 
(a) What are the mean and the standard deviation for the number of 13C 

atoms in a molecule of cholesterol (C27H44O)? 
(b)  What is the probability that a molecule of cholesterol has no atoms 

of 13C?

Solution

The probability of finding an atom of 13C in a molecule of cholesterol 
follows a binomial distribution, where X is the number of 13C atoms, N 
is the number of carbon atoms in a molecule of cholesterol, and p is the 
probability that any single atom of carbon in 13C.

(a) The mean number of 13C atoms in a molecule of cholesterol is

The term N! reads as N-factorial and is the 
product N × (N-1) × (N-2) ×…× 1. For 
example, 4! is 4 × 3 × 2 × 1 =   24. Your 
calculator probably has a key for calculat-
ing factorials.
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µ = = × =Np 27 0 0111 0 300. .

with a standard deviation of

σ= − = × × − =Np p( ) . ( . ) .1 27 0 0111 1 0 0111 0 172

(b)  The probability of finding a molecule of cholesterol without an atom 
of 13C is

P( , )
!

!( )!
( . ) ( . )0 27

27
0 27 0

0 0111 1 0 01110 27=
−

× × − −− =0 0 740.

There is a 74.0% probability that a molecule of cholesterol will not 
have an atom of 13C, a result consistent with the observation that 
the mean number of 13C atoms per molecule of cholesterol, 0.300, 
is less than one.

A portion of the binomial distribution for atoms of 13C in cholesterol is 
shown in Figure 4.6. Note in particular that there is little probability of 
finding more than two atoms of 13C in any molecule of cholesterol.

noRMal diStRiBution

A binomial distribution describes a population whose members have only 
certain, discrete values. This is the case with the number of 13C atoms in 
cholesterol. A molecule of cholesterol, for example, can have two 13C atoms, 
but it can not have 2.5 atoms of 13C. A population is continuous if its mem-
bers may take on any value. The efficiency of extracting cholesterol from 
a sample, for example, can take on any value between 0% (no cholesterol 
extracted) and 100% (all cholesterol extracted).

The most common continuous distribution is the Gaussian, or normal 
distribution, the equation for which is

Figure 4.6 Portion of the bino-
mial distribution for the number 
of naturally occurring 13C atoms 
in a molecule of cholesterol. Only 
3.6% of cholesterol molecules 
contain more than one atom of 
13C, and only 0.33% contain 
more than two atoms of 13C. 0 1 2 3 4 5
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f X
X

( )
( )

=
−

−1

2 2
2

2

2

πσ
σe

µ

where μ is the expected mean for a population with n members

µ =
∑ X

n

i
i

and s2 is the population’s variance.

σ2

2

=
−∑( )X

n

i
i

µ
4.8

Examples of normal distributions, each with an expected mean of 0 and 
with variances of 25, 100, or 400, are shown in Figure 4.7. Two features 
of these normal distribution curves deserve attention. First, note that each 
normal distribution has a single maximum corresponding to μ, and that the 
distribution is symmetrical about this value. Second, increasing the popula-
tion’s variance increases the distribution’s spread and decreases its height; 
the area under the curve, however, is the same for all three distribution.

The area under a normal distribution curve is an important and useful 
property as it is equal to the probability of finding a member of the popula-
tion with a particular range of values. In Figure 4.7, for example, 99.99% 
of the population shown in curve (a) have values of X between -20 and 
20. For curve (c), 68.26% of the population’s members have values of X 
between -20 and 20.

Because a normal distribution depends solely on μ and s2, the prob-
ability of finding a member of the population between any two limits is 
the same for all normally distributed populations. Figure 4.8, for example, 
shows that 68.26% of the members of a normal distribution have a value 

Figure 4.7 Normal distribution 
curves for: 
 (a) μ = 0; s2 = 25
 (b) μ = 0; s2 = 100
 (c) μ = 0; s2=400
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within the range μ ± 1s, and that 95.44% of population’s members have 
values within the range μ ± 2s. Only 0.17% members of a population have 
values exceeding the expected mean by more than ± 3s. Additional ranges 
and probabilities are gathered together in a probability table that you will 
find in Appendix 3. As shown in Example 4.11, if we know the mean and 
standard deviation for a normally distributed population, then we can de-
termine the percentage of the population between any defined limits. 

Example 4.11

The amount of aspirin in the analgesic tablets from a particular manu-
facturer is known to follow a normal distribution with μ = 250 mg and 
s2 = 25. In a random sampling of tablets from the production line, what 
percentage are expected to contain between 243 and 262 mg of aspirin?

Solution

We do not determine directly the percentage of tablets between 243 mg 
and 262 mg of aspirin. Instead, we first find the percentage of tablets with 
less than 243 mg of aspirin and the percentage of tablets having more than 
262 mg of aspirin. Subtracting these results from 100%, gives the percent-
age of tablets containing between 243 mg and 262 mg of aspirin. 
To find the percentage of tablets with less than 243 mg of aspirin or more 
than 262 mg of aspirin we calculate the deviation, z, of each limit from μ 
in terms of the population’s standard deviation, s

 
z

X
=

−µ
σ

where X is the limit in question. The deviation for the lower limit is

-3σ -2σ -1σ +3σ+2σ+1σμ

34.13%

13.59 %
2.14 % 2.14 %

34.13%

13.59 %

Value of X

Figure 4.8 Normal distribution 
curve showing the area under the 
curve for several different ranges 
of values of X. As shown here, 
68.26% of the members of a nor-
mally distributed population have 
values within ±1s of the popula-
tion’s expected mean, and 13.59% 
have values between μ–1s and 
u–2s. The area under the curve 
between any two limits can be 
found using the probability table 
in Appendix 3.
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z lower =
−

=−
243 250

5
1 4.

and the deviation for the upper limit is

zupper =
−

=+
262 250

5
2 4.

Using the table in Appendix 3, we find that the percentage of tablets with 
less than 243 mg of aspirin is 8.08%, and the percentage of tablets with 
more than 262 mg of aspirin is 0.82%. Therefore, the percentage of tablets 
containing between 243 and 262 mg of aspirin is

100.00% - 8.08% - 0.82 % = 91.10%

Figure 4.9 shows the distribution of aspiring in the tablets, with the area 
in blue showing the percentage of tablets containing between 243 mg and 
262 mg of aspirin.

230 240 250 260 270
Aspirin (mg)

8.08%
0.82%

91.10% Figure 4.9 Normal distribution 
for the population of aspirin tab-
lets in Example 4.11. The popula-
tion’s mean and standard deviation 
are 250 mg and 5 mg, respectively. 
The shaded area shows the percent-
age of tablets containing between 
243 mg and 262 mg of aspirin. 

Practice Exercise 4.5
What percentage of aspirin tablets will contain between 240 mg and 245 
mg of aspirin if the population’s mean is 250 mg and the population’s 
standard deviation is 5 mg.

Click here to review your answer to this exercise.
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4D.3 Confidence Intervals for Populations

If we randomly select a single member from a population, what is its most 
likely value? This is an important question, and, in one form or another, it 
is at the heart of any analysis in which we wish to extrapolate from a sample 
to the sample’s parent population. One of the most important features of 
a population’s probability distribution is that it provides a way to answer 
this question. 

Figure 4.8 shows that for a normal distribution, 68.26% of the popula-
tion’s members are found within the range of μ ± 1s. Stating this another 
way, there is a 68.26% probability that the result for a single sample drawn 
from a normally distributed population is in the interval μ ± 1s. In general, 
if we select a single sample we expect its value, Xi to be in the range

X zi = ±µ σ 4.9

where the value of z is how confident we are in assigning this range. Values 
reported in this fashion are called confidence intervals. Equation 4.9, 
for example, is the confidence interval for a single member of a population. 
Table 4.12 gives the confidence intervals for several values of z. For reasons 
we will discuss later in the chapter, a 95% confidence level is a common 
choice in analytical chemistry.

Example 4.12

What is the 95% confidence interval for the amount of aspirin in a single 
analgesic tablet drawn from a population for which μ is 250 mg and s2 
is 25?

Solution

Using Table 4.12, we find that z is 1.96 for a 95% confidence interval. 
Substituting this into equation 4.9, gives the confidence interval for a 
single tablet as

Xi = μ ± 1.96s = 250 mg ± (1.96 × 5) = 250 mg ± 10 mg

When z = 1, we call this the 68.26% con-
fidence interval.

Table 4.12 Confidence Intervals for a 
Normal Distribution (μ ± zs)

z Confidence Interval (%)
0.50 38.30
1.00 68.26
1.50 86.64
1.96 95.00
2.00 95.44
2.50 98.76
3.00 99.73
3.50 99.95



91Chapter 4 Evaluating Analytical Data

A confidence interval of 250 mg ± 10 mg means that 95% of the tablets in 
the population contain between 240 and 260 mg of aspirin.

Alternatively, we can express a confidence interval for the expected 
mean in terms of the population’s standard deviation and the value of a 
single member drawn from the population. 

µ = ±X zi σ 4.10

Example 4.13

The population standard deviation for the amount of aspirin in a batch of 
analgesic tablets is known to be 7 mg of aspirin. If you randomly select and 
analyze a single tablet and find that it contains 245 mg of aspirin, what is 
the 95% confidence interval for the population’s mean?

Solution

The 95% confidence interval for the population mean is given as

µ mg mg mg mg= ± = ± × = ±X zi σ 245 1 96 7 245 14( . )

Therefore, there is 95% probability that the population’s mean, μ, lies 
within the range of 231 mg to 259 mg of aspirin. 

It is unusual to predict the population’s expected mean from the analy-
sis of a single sample. We can extend confidence intervals to include the 
mean of n samples drawn from a population of known s. The standard 
deviation of the mean, σX , which also is known as the standard error 
of the mean, is

σ
σ

X
n

=

The confidence interval for the population’s mean, therefore, is

µ = ±X
z

n
σ

4.11

Example 4.14

What is the 95% confidence interval for the analgesic tablets described 
in Example 4.13, if an analysis of five tablets yields a mean of 245 mg of 
aspirin?

Solution

In this case the confidence interval is

Problem 8 at the end of the chapter asks 
you to derive this equation using a propa-
gation of uncertainty.
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µ mg mg mg mg= ±
×

= ±245
1 96 7

5
245 6

.

Thus, there is a 95% probability that the population’s mean is between 239 
to 251 mg of aspirin. As expected, the confidence interval when using the 
mean of five samples is smaller than that for a single sample.

4D.4 Probability Distributions for Samples

In working example 4.11–4.14 we assumed that the amount of aspirin in 
analgesic tablets is normally distributed. Without analyzing every member 
of the population, how can we justify this assumption? In situations where 
we can not study the whole population, or when we can not predict the 
mathematical form of a population’s probability distribution, we must de-
duce the distribution from a limited sampling of its members. 

SaMple diStRiButionS and the centRal liMit theoReM

Let’s return to the problem of determining a penny’s mass to explore further 
the relationship between a population’s distribution and the distribution of 
a sample drawn from that population. The two sets of data in Table 4.11 
are too small to provide a useful picture of a sample’s distribution. To gain 
a better picture of the distribution of pennies we need a larger sample, such 
as that shown in Table 4.13. The mean and the standard deviation for this 
sample of 100 pennies are 3.095 g and 0.0346 g, respectively. 

A histogram (Figure 4.10) is a useful way to examine the data in Table 
4.13. To create the histogram, we divide the sample into mass intervals 
and determine the percentage of pennies within each interval (Table 4.14). 
Note that the sample’s mean is the midpoint of the histogram. 

Figure 4.10 also includes a normal distribution curve for the population 
of pennies, assuming that the mean and variance for the sample provide ap-
propriate estimates for the mean and variance of the population. Although 
the histogram is not perfectly symmetric, it provides a good approximation 
of the normal distribution curve, suggesting that the sample of 100 pennies 

Practice Exercise 4.6
An analysis of seven aspirin tablets from a population known to have 
a standard deviation of 5, gives the following results in mg aspirin per 
tablet:

246     249     255     251     251     247     250

What is the 95% confidence interval for the population’s expected 
mean?

Click here when you are ready to review your answer.
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Table 4.13 Masses for a Sample of 100 Circulating U. S. Pennies
Penny Mass (g) Penny Mass (g) Penny Mass (g) Penny Mass (g)

1 3.126 26 3.073 51 3.101 76 3.086
2 3.140 27 3.084 52 3.049 77 3.123
3 3.092 28 3.148 53 3.082 78 3.115
4 3.095 29 3.047 54 3.142 79 3.055
5 3.080 30 3.121 55 3.082 80 3.057
6 3.065 31 3.116 56 3.066 81 3.097
7 3.117 32 3.005 57 3.128 82 3.066
8 3.034 33 3.115 58 3.112 83 3.113
9 3.126 34 3.103 59 3.085 84 3.102
10 3.057 35 3.086 60 3.086 85 3.033
11 3.053 36 3.103 61 3.084 86 3.112
12 3.099 37 3.049 62 3.104 87 3.103
13 3.065 38 2.998 63 3.107 88 3.198
14 3.059 39 3.063 64 3.093 89 3.103
15 3.068 40 3.055 65 3.126 90 3.126
16 3.060 41 3.181 66 3.138 91 3.111
17 3.078 42 3.108 67 3.131 92 3.126
18 3.125 43 3.114 68 3.120 93 3.052
19 3.090 44 3.121 69 3.100 94 3.113
20 3.100 45 3.105 70 3.099 95 3.085
21 3.055 46 3.078 71 3.097 96 3.117
22 3.105 47 3.147 72 3.091 97 3.142
23 3.063 48 3.104 73 3.077 98 3.031
24 3.083 49 3.146 74 3.178 99 3.083
25 3.065 50 3.095 75 3.054 100 3.104

Table 4.14 Frequency Distribution for the Data in Table 4.13
Mass Interval Frequency (as %) Mass Interval Frequency (as %)
2.991–3.009 2 3.104–3.123 19
3.010–3.028 0 3.124–3.142 12
3.029–3.047 4 3.143–3.161 3
3.048–3.066 19 3.162–3.180 1
3.067–3.085 15 3.181–3.199 2
3.086–3.104 23
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is normally distributed. It is easy to imagine that the histogram will more 
closely approximate a normal distribution if we include additional pennies 
in our sample.

We will not offer a formal proof that the sample of pennies in Table 4.13 
and the population of all circulating U. S. pennies are normally distributed. 
The evidence we have seen, however, strongly suggests that this is true. Al-
though we can not claim that the results for all analytical experiments are 
normally distributed, in most cases the data we collect in the laboratory 
are, in fact, drawn from a normally distributed population. According to 
the central limit theorem, when a system is subject to a variety of in-
determinate errors, the results approximate a normal distribution.6 As the 
number of sources of indeterminate error increases, the results more closely 
approximate a normal distribution. The central limit theorem holds true 
even if the individual sources of indeterminate error are not normally dis-
tributed. The chief limitation to the central limit theorem is that the sources 
of indeterminate error must be independent and of similar magnitude so 
that no one source of error dominates the final distribution. 

An additional feature of the central limit theorem is that a distribu-
tion  of means for samples drawn from a population with any distribution 
will closely approximate a normal distribution if the size of the samples is 
large enough. Figure 4.11 shows the distribution for two samples of 10 000 
drawn from a uniform distribution in which every value between 0 and 1 
occurs with an equal frequency. For samples of size n = 1, the resulting dis-
tribution closely approximates the population’s uniform distribution. The 
distribution of the means for samples of size n = 10, however, closely ap-
proximates a normal distribution.

6 Mark, H.; Workman, J. Spectroscopy 1988, 3, 44–48.

2.95 3.00 3.05 3.10 3.15 3.20 3.25

Mass of Pennies (g)

Figure 4.10 The blue bars show 
a histogram for the data in Table 
4.13. The height of a bar corre-
sponds to the percentage of pennies 
within the mass intervals shown in 
Table 4.14. Superimposed on the 
histogram is a normal distribution 
curve assuming that μ and s2 for 
the population are equivalent to 
X  and s2 for the sample. The total 
area of the histogram’s bars and the 
area under the normal distribution 
curve are equal.

You might reasonably ask whether this 
aspect of the central limit theorem is im-
portant as it is unlikely that we will com-
plete 10 000 analyses, each of which is 
the average of 10 individual trials. This is 
deceiving. When we acquire a sample for 
analysis—a sample of soil, for example—
it consists of many individual particles, 
each of which is an individual sample of 
the soil. Our analysis of the gross sample, 
therefore, is the mean for this large num-
ber of individual soil particles. Because of 
this, the central limit theorem is relevant.



95Chapter 4 Evaluating Analytical Data

degReeS of fReedoM

In reading to this point, did you notice the differences between the equa-
tions for the standard deviation or variance of a population and the stan-
dard deviation or variance of a sample? If not, here are the two equations:

σ2

2

=
−∑( )X

n

i
i

µ

s
X X

n

i
i2

2

1
=

−

−

∑( )

Both equations measure the variance around the mean, using μ for a popu-
lation and X  for a sample. Although the equations use different measures 
for the mean, the intention is the same for both the sample and the popula-
tion. A more interesting difference is between the denominators of the two 
equations. In calculating the population’s variance we divide the numera-
tor by the population’s size, n. For the sample’s variance we divide by n – 1, 
where n is the size of the sample. Why do we make this distinction?

A variance is the average squared deviation of individual results from 
the mean. In calculating an average we divide by the number of indepen-
dent measurements, also known as the degrees of freedom, contributing 
to the calculation. For the population’s variance, the degrees of freedom is 
equal to the total number of members, n, in the population. In measuring 

Figure 4.11 Histograms  for (a) 10 000 samples of size n = 1 drawn from a uniform distribution with a minimum value 
of 0 and a maximum value of 1, and (b) the means for 10 000 samples of size n = 10 drawn from the same uniform 
distribution. For (a) the mean of the 10 000 samples is 0.5042, and for (b) the mean of the 10 000 samples is 0.5006.  
Note that for (a) the distribution closely approximates a uniform distribution in which every possible result is equally 
likely, and that for (b) the distribution closely approximates a normal distribution.
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every member of the population we have complete information about the 
population.

When calculating the sample’s variance, however, we first replace μ with 
X , which we also calculate from the same data. If there are n members in 
the sample, we can deduce the value of the nth member from the remain-
ing n – 1 members. For example, if n = 5 and we know that the first four 
samples are 1, 2, 3 and 4, and that the mean is 3, then the fifth member of 
the sample must be

 X X n X X X X5 1 2 3 4 3 5 1 2 3 4 5= × − − − − = × − − − − =( ) ( )

Using n – 1 in place of n when calculating the sample’s variance ensures that 
s2 is an unbiased estimator of s2. 

4D.5 Confidence Intervals for Samples

Earlier we introduced the confidence interval as a way to report the most 
probable value for a population’s mean, μ,

µ = ±X
z

n
σ

4.11

where X  is the mean for a sample of size n, and s is the population’s stan-
dard deviation. For most analyses we do not know the population’s standard 
deviation. We can still calculate a confidence interval, however, if we make 
two modifications to equation 4.11. 

The first modification is straightforward—we replace the population’s 
standard deviation, s, with the sample’s standard deviation, s. The second 
modification is less obvious. The values of z in Table 4.12 are for a normal 
distribution, which is a function of s2, not s2. Although the sample’s vari-
ance, s2, provides an unbiased estimate for the population’s variance, s2, 
the value of s2 for any sample may differ significantly from s2. To account 
for the uncertainty in estimating s2, we replace the variable z in equation 
4.11 with the variable t, where t is defined such that t ≥ z at all confidence 
levels. 

µ = ±X
ts
n 4.12

Values for t at the 95% confidence level are shown in Table 4.15. Note that 
t becomes smaller as the number of degrees of freedom increases, approach-
ing z as n approaches infinity. The larger the sample, the more closely its 
confidence interval approaches the confidence interval given by equation 
4.11. Appendix 4 provides additional values of t for other confidence lev-
els. 

Here is another way to think about de-
grees of freedom. We analyze samples to 
make predictions about the underlying 
population. When our sample consists of 
n measurements we cannot make more 
than n independent predictions about 
the population. Each time we estimate a 
parameter, such as the population’s mean, 
we lose a degree of freedom. If there are 
n degrees of freedom for calculating the 
sample’s mean, then there are n – 1 degrees 
of freedom remaining for calculating the 
sample’s variance.
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Example 4.15

What are the 95% confidence intervals for the two samples of pennies in 
Table 4.11?

Solution

The mean and standard deviation for first experiment are, respectively, 
3.117 g and 0.051 g. Because the sample consists of seven measurements, 
there are six degrees of freedom. The value of t from Table 4.15, is 2.447. 
Substituting into equation 4.12 gives

µ g
g

g g= ±
×

= ±3 117
2 447 0 051

7
3 117 0 047.

. .
. .

For the second experiment the mean and standard deviation are 3.081 g 
and 0.073 g, respectively, with four degrees of freedom. The 95% confi-
dence interval is

µ g
g

g g= ±
×

= ±3 081
2 776 0 037

5
3 081 0 046.

. .
. .

Based on the first experiment, there is a 95% probability that the popu-
lation’s mean is between 3.070 to 3.164 g. For the second experiment, 
the 95% confidence interval spans 3.035 g–3.127 g. The two confidence 
intervals are not identical, but the mean for each experiment is contained 
within the other experiment’s confidence interval. There also is an appre-
ciable overlap of the two confidence intervals. Both of these observations 
are consistent with samples drawn from the same population. 

Table 4.15 Values of t for a 95% Confidence Interval
Degrees of 
Freedom t

Degrees of 
Freedom t

1 12.706 12 2.179
2 4.303 14 2.145
3 3.181 16 2.120
4 2.776 18 2.101
5 2.571 20 2.086
6 2.447 30 2.042
7 2.365 40 2.021
8 2.306 60 2.000
9 2.262 100 1.984
10 2.228 ∞ 1.960

Our comparison of these two confidence 
intervals is rather vague and unsatisfying. 
We will return to this point in the next 
section, when we consider a statistical ap-
proach to comparing the results of experi-
ments.
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4D.6 A Cautionary Statement

There is a temptation when analyzing data to plug numbers into an equa-
tion, carry out the calculation, and report the result. This is never a good 
idea, and you should develop the habit of constantly reviewing and evaluat-
ing your data. For example, if an analysis on five samples gives an analyte’s 
mean concentration as 0.67 ppm with a standard deviation of 0.64 ppm, 
then the 95% confidence interval is

µ ppm
ppm

5
ppm ppm= ±

×
= ±0 67

2 776 0 64
0 67 0 79.

. .
. .

This confidence interval suggests that the analyte’s true concentration lies 
within the range of –0.12 ppm to 1.46 ppm. Including a negative concen-
tration within the confidence interval should lead you to reevaluate your 
data or conclusions. A closer examination of your data may convince you 
that the standard deviation is larger than expected, making the confidence 
interval too broad, or you may conclude that the analyte’s concentration is 
too small to detect accurately.

Here is a second example of why you should closely examine your data. 
The results for samples drawn from a normally distributed population must 
be random. If the results for a sequence of samples show a regular pattern 
or trend, then the underlying population may not be normally distributed, 
or there may be a time-dependent determinate error. For example, if we 
randomly select 20 pennies and find that the mass of each penny is larger 
than that for the preceding penny, we might suspect that our balance is 
drifting out of calibration. 

4E Statistical Analysis of Data
A confidence interval is a useful way to report the result of an analysis 
because it sets limits on the expected result. In the absence of determinate 
error, a confidence interval indicates the range of values in which we expect 
to find the population’s expected mean. When we report a 95% confidence 
interval for the mass of a penny as 3.117 g ± 0.047 g, for example, we are 
claiming that there is only a 5% probability that the expected mass of penny 
is less than 3.070 g or more than 3.164 g. 

Practice Exercise 4.7
What is the 95% confidence interval for the sample of 100 pennies in 
Table 4.13? The mean and the standard deviation for this sample are 
3.095 g and 0.0346 g, respectively. Compare your result to the confi-
dence intervals for the samples of pennies in Table 4.11.

Click here when to review your answer to this exercise.

We will return to the topic of detection 
limits near the end of the chapter.
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Because a confidence interval is a statement of probability, it allows us 
to answer questions such as “Are the results for a newly developed method 
for determining cholesterol in blood significantly different from those ob-
tained using a standard method?” or “Is there a significant variation in 
the composition of rainwater collected at different sites downwind from a 
coal-burning utility plant?”. In this section we introduce a general approach 
to the statistical analysis of data. Specific statistical tests are presented in 
Section 4F.

4E.1 Significance Testing

Let’s consider the following problem. To determine if a medication is effec-
tive in lowering blood glucose concentrations, we collect two sets of blood 
samples from a patient. We collect one set of samples immediately before 
administering the medication, and collect the second set of samples several 
hours later. After analyzing the samples, we report their respective means 
and variances. How do we decide if the medication was successful in lower-
ing the patient’s concentration of blood glucose? 

One way to answer this question is to construct normal distribution 
curves for each sample, and to compare them to each other. Three possible 
outcomes are shown in Figure 4.12. In Figure 4.12a, there is a complete 
separation of the normal distribution curves, strongly suggesting that the 
samples are significantly different. In Figure 4.12b, the normal distribu-
tions for the two samples almost completely overlap each other, suggesting 
that any difference between the samples is insignificant. Figure 4.12c, how-
ever, presents a dilemma. Although the means for the two samples appear 
to be different, there is sufficient overlap of the normal distributions that 
a significant number of possible outcomes could belong to either distribu-
tion. In this case the best we can do is to make a statement about the prob-
ability that the samples are significantly different. 

The process by which we determine the probability that there is a sig-
nificant difference between two samples is called significance testing or 
hypothesis testing. Before discussing specific examples we will first establish 
a general approach to conducting and interpreting significance tests.

4E.2 Constructing a Significance Test

The purpose of a significance test is to determine whether the difference 
between two or more values is too large to be explained by indeterminate 
error. The first step in constructing a significance test is to state the prob-
lem as a yes or no question, such as “Is this medication effective at lower-
ing a patient’s blood glucose levels?”. A null hypothesis and an alternative 
hypothesis provide answers to the question. The null hypothesis, H0, is 
that indeterminate error is sufficient to explain any differences in our data. 
The alternative hypothesis, HA, is that the differences are too great to 
be explained by random error and, therefore, must be determinate. We test 

Values

(a)

(b)

(c)

Values

Values
Figure 4.12 Three examples show-
ing possible relationships between 
the normal distribution curves for 
two samples. In (a) the curves are 
completely separate, suggesting 
that the samples are significantly 
different from each other. In (b) 
the two curves are almost identi-
cal, suggesting that the samples 
are indistinguishable. The partial 
overlap of the curves in (c) means 
that the best we can do is to indi-
cate the probability that there is a 
difference between the samples.
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the null hypothesis, which we either retain or reject. If we reject the null 
hypothesis, then we must accept the alternative hypothesis, concluding 
that the difference is significant and that it cannot be explained by random 
error.

Failing to reject a null hypothesis is not the same as accepting it. We 
retain a null hypothesis because there is insufficient evidence to prove it 
incorrect. It is impossible to prove that a null hypothesis is true. This is an 
important point that is easy to forget. To appreciate this point let’s return 
to our sample of 100 pennies in Table 4.13. After looking at the data you 
might propose the following null and alternative hypotheses.

H0:  The mass of any U.S. penny in circulation is in the range of 2.900g–
3.200 g.

HA:  A U.S. penny in circulation may have a mass less than 2.900 g or a 
mass of more than 3.200 g.

To test the null hypothesis you reach into your pocket, retrieve a penny, and 
determine its mass. If the penny’s mass is 2.512 g then you reject the null 
hypothesis, and accept the alternative hypothesis. Suppose that the penny’s 
mass is 3.162 g. Although this result increases your confidence in the null 
hypothesis, it does not prove it is correct because the next penny you pull 
from your pocket might weigh less than 2.900 g or more than 3.200 g.

After stating the null and alternative hypotheses, the second step is to 
choose a confidence level for the analysis. The confidence level defines the 
probability that we will reject the null hypothesis when it is, in fact, true. 
We can express this as our confidence in correctly rejecting the null hypoth-
esis (e.g. 95%), or as the probability that we are incorrectly rejecting the 
null hypothesis. For the latter, the confidence level is given as a, where

α = −1
100

confidence level (%)

For a 95% confidence level, a is 0.05. 
The third step is to calculate an appropriate test statistic and to compare 

it to a critical value. The test statistic’s critical value defines a breakpoint 
between values that lead us to reject or to retain the null hypothesis. How 
we calculate the test statistic depends on what we are comparing, a topic 
we cover in section 4F. The last step is to either retain the null hypothesis, 
or to reject it and accept the alternative hypothesis. 

4E.3 One-Tailed and Two-Tailed Significance Tests

Suppose we want to evaluate the accuracy of a new analytical method. We 
might use the method to analyze a Standard Reference Material contain-
ing a known concentration of analyte, μ. We analyze the standard several 
times, obtaining an mean value, X , for the analyte’s concentration. Our 
null hypothesis is that there is no difference between X  and μ

The four steps for a statistical analysis of 
data:

1. Pose a question, and state the null hy-
pothesis and the alternative hypoth-
esis.

3. Choose a confidence level for the sta-
tistical analysis.

3. Calculate an appropriate test statistic 
and compare it to a critical value.

4. Either retain the null hypothesis, or 
reject it and accept the alternative hy-
pothesis.

In this textbook we use a to represent the 
probability of incorrectly rejecting the 
null hypothesis. In other textbooks this 
probability is given as p (often read as “p-
value”). Although the symbols differ, the 
meaning is the same.
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H X0 : = µ  

If we conduct the significance test at a = 0.05, then we retain the null hy-
pothesis if a 95% confidence interval around X  contains μ. If the alterna-
tive hypothesis is 

H XA : ≠ µ

then we reject the null hypothesis and accept the alternative hypothesis if 
μ lies in the shaded areas at either end of the sample’s probability distribu-
tion curve (Figure 4.13a). Each of the shaded areas accounts for 2.5% of 
the area under the probability distribution curve. This is a two-tailed 
significance test because we reject the null hypothesis for values of μ at 
either extreme of the sample’s probability distribution curve.

We also can write the alternative hypothesis in two additional ways

H XA : > µ

H XA : < µ

rejecting the null hypothesis if μ falls within the shaded areas shown in 
Figure 4.13b or Figure 4.13c, respectively. In each case the shaded area 
represents 5% of the area under the probability distribution curve. These 
are examples of a one-tailed significance test.

For a fixed confidence level, a two-tailed significance test is always a 
more conservative test because rejecting the null hypothesis requires a larger 
difference between the parameters we are comparing. In most situations we 
have no particular reason to expect that one parameter must be larger (or 
smaller) than the other parameter. This is the case, for example, in evaluat-
ing the accuracy of a new analytical method. A two-tailed significance test, 
therefore, is usually the appropriate choice. 

Figure 4.13 Examples of a (a) two-tailed, and a (b, c) a one-tailed, significance test of X  and μ. The 
normal distribution curves are drawn using the sample’s mean and standard deviation. For a = 0.05, 
the blue areas account for 5% of the area under the curve. If the value of μ is within the blue areas, 
then we reject the null hypothesis and accept the alternative hypothesis. We retain the null hypothesis 
if the value of μ is within the unshaded area of the curve.

(a) (b) (c)

Values Values Values

d
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We reserve a one-tailed significance test for a situation where we are 
specifically interested in whether one parameter is larger (or smaller) than 
the other parameter. For example, a one-tailed significance test is appropri-
ate if we are evaluating a medication’s ability to lower blood glucose levels. 
In this case we are interested only in whether the result after administering 
the medication is less than the result before beginning treatment. If the 
patient’s blood glucose level is greater after administering the medication, 
then we know the answer—the medication did not work—without con-
ducting a statistical analysis.

4E.4 Errors in Significance Testing

Because a significance test relies on probability, its interpretation is natu-
rally subject to error. In a significance test, a defines the probability of 
rejecting a null hypothesis that is true. When we conduct a significance 
test at a = 0.05, there is a 5% probability that we will incorrectly reject 
the null hypothesis. This is known as a type 1 error, and its risk is always 
equivalent to a. Type 1 errors in two-tailed and one-tailed significance tests 
correspond to the shaded areas under the probability distribution curves 
in Figure 4.13.

A second type of error occurs when we retain a null hypothesis even 
though it is false. This is as a type 2 error, and its probability of occurrence 
is b. Unfortunately, in most cases we cannot calculate or estimate the value 
for b. The probability of a type 2 error, however, is inversely proportional 
to the probability of a type 1 error.  

Minimizing a type 1 error by decreasing a increases the likelihood of a 
type 2 error. When we choose a value for a we are making a compromise be-
tween these two types of error. Most of the examples in this text use a 95% 
confidence level (a = 0.05) because this provides a reasonable compromise 
between type 1 and type 2 errors. It is not unusual, however, to use more 
stringent (e.g. a = 0.01) or more lenient (e.g. a = 0.10) confidence levels.

4F Statistical Methods for Normal Distributions
The most common distribution for our results is a normal distribution. 
Because the area between any two limits of a normal distribution is well 
defined, constructing and evaluating significance tests is straightforward.

4F.1 Comparing X  to μ

One approach for validating a new analytical method is to analyze a sample 
containing a known amount of analyte, μ. To judge the method’s accuracy 
we analyze several portions of the sample, determine the average amount 
of analyte in the sample, X , and use a significance test to compare it to μ. 
Our null hypothesis, H X0 : = µ , is that any difference between X  and μ 
is the result of indeterminate errors affecting the determination of X . The 
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alternative hypothesis, H XA : ≠ µ , is that the difference between X  and 
μ is too large to be explained by indeterminate error. 

The test statistic is texp, which we substitute into the confidence interval 
for μ (equation 4.12).

µ = ±X
t s

n
exp

4.14

Rearranging this equation and solving for texp

t
X n

sexp =
−µ

4.15

gives the value of texp when μ is at either the right edge or the left edge of 
the sample’s confidence interval (Figure 4.14a). 

To determine if we should retain or reject the null hypothesis, we com-
pare the value of texp to a critical value, t(a,n), where a is the confidence 
level and n is the degrees of freedom for the sample. The critical value 
t(a,n) defines the largest confidence interval resulting from indeterminate 
errors. If texp > t(a,n), then our sample’s confidence interval is too large to 
be explained by indeterminate errors (Figure 4.14b). In this case, we reject 
the null hypothesis and accept the alternative hypothesis. If texp ≤ t(a,n), 
then the confidence interval for our sample can be explained indeterminate 
error, and we retain the null hypothesis (Figure 4.14c).

Example 4.16 provides a typical application of this significance test, 
which is known as a t-test of X  to μ.

Values for t(a,n) are in Appendix 4.

Another name for the t-test is Student’s 
t-test. Student was the pen name for Wil-
liam Gossett (1876-1927) who developed 
the t-test while working as a statistician 
for the Guiness Brewery in Dublin, Ire-
land. He published under the name Stu-
dent because the brewery did not want 
its competitors to know they were using 
statistics to help improve the quality of 
their products.
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Figure 4.14 Relationship between confidence intervals and the result of a significance test. (a) The shaded area 
under the normal distribution curve shows the confidence interval for the sample based on texp. Based on the 
sample, we expect μ to fall within the shaded area. The solid bars in (b) and (c) show the confidence intervals for 
μ that can be explained by indeterminate error given the choice of a and the available degrees of freedom, n. For 
(b) we must reject the null hypothesis because there are portions of the sample’s confidence interval that lie outside 
the confidence interval due to indeterminate error. In the case of (c) we retain the null hypothesis because the 
confidence interval due to indeterminate error completely encompasses the sample’s confidence interval.
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Example 4.16

Before determining the amount of Na2CO3 in a sample, you decide to 
check your procedure by analyzing a sample known to be 98.76% w/w 
Na2CO3. Five replicate determinations of the %w/w Na2CO3 in the stan-
dard gave the following results.

98.71%    98.59%    98.62%    98.44%    98.58%

Using a = 0.05, is there any evidence that the analysis is giving inaccurate 
results?

Solution

The mean and standard deviation for the five trials are

X  = 98.59                 s = 0.0973

Because there is no reason to believe that the results for the standard must 
be larger (or smaller) than μ, a two-tailed t-test is appropriate. The null 
hypothesis and alternative hypothesis are

H X0 : = µ                H XA : ≠ µ

The test statistic, texp, is

t
X n

sexp

. .
.

.=
−

=
−

=
µ 98 76 98 59 5

0 0973
3 91

The critical value for t(0.05,4) from Appendix 4 is 2.78. Since texp is greater 
than t(0.05,4) we reject the null hypothesis and accept the alternative hy-
pothesis. At the 95% confidence level the difference between X  and μ is 
too large to be explained by indeterminate sources of error, suggesting that 
a determinate source of error is affecting the analysis. 

Earlier we made the point that you need to exercise caution when in-
terpreting the results of a statistical analysis. We will keep returning to this 
point because it is an important one. Having determined that a result is 

There is another way to interpret the result 
of this t-test. Knowing that texp is 3.91 
and that there are 4 degrees of freedom, 
we use Appendix 4 to estimate the a value 
corresponding to a t(a,4) of 3.91. From 
Appendix 4, t(0.02,4) is 3.75 and t(0.01, 
4) is 4.60. Although we can reject the null 
hypothesis at the 98% confidence level, 
we cannot reject it at the 99% confidence 
level.

For a discussion of the advantages of this 
approach, see J. A. C. Sterne and G. D. 
Smith “Sifting the evidence—what’s 
wrong with significance tests?” BMJ 2001, 
322, 226–231.

Practice Exercise 4.8
To evaluate the accuracy of a new analytical method, an analyst deter-
mines the purity of a standard for which μ is 100.0%, obtaining the 
following results.

99.28%  103.93%   99.43%   99.84%   97.60%   96.70%   98.02%

Is there any evidence at a = 0.05 that there is a determinate error affect-
ing the results?

Click here to review your answer to this exercise.

http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1119478&blobtype=pdf
http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1119478&blobtype=pdf
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inaccurate, as we did in Example 4.16, the next step is to identify and to 
correct the error. Before expending time and money on this, however, you 
should first critically examine your data. For example, the smaller the value 
of s, the larger the value of texp. If the standard deviation for your analysis is 
unrealistically small, the probability of a type 2 error increases. Including a 
few additional replicate analyses of the standard and reevaluating the t-test 
may strengthen your evidence for a determinate error, or it may show that 
there is no evidence for a determinate error.

 4F.2 Comparing s2 to σ2

If we regularly analyze a particular sample, we may be able to establish the 
expected variance, s2, for the analysis. This often is the case, for example, 
in clinical labs that routinely analyze hundreds of blood samples each day. 
A few replicate analyses of a single sample gives a sample variance, s2, whose 
value may or may not differ significantly from s2. 

We can use an F-test to evaluate whether a difference between s2 and 
s2 is significant. The null hypothesis is H s0

2 2: = σ  and the alternative hy-
pothesis is H sA : 2 2≠σ . The test statistic for evaluating the null hypothesis 
is Fexp, which is given as either

F
s

s

exp

( )

=

>

2

2

2 2
σ
σ    

or

    

F
s

s

exp

( )

=

<

σ

σ

2

2

2 2

4.16

depending on whether s2 is larger or smaller than s2. This way of defining 
Fexp ensures that its value is always greater than or equal to one.

If the null hypothesis is true, then Fexp should equal one. Because of 
indeterminate errors, however, Fexp usually is greater than one. A critical 
value, F(a, nnum, nden), gives the largest value of Fexp that we can attribute 
to indeterminate error. It is chosen for a specified significance level, a,  and 
for the degrees of freedom for the variance in the numerator, nnum, and the 
variance in the denominator, nden. The degrees of freedom for s2 is n – 1, 
where n is the number of replicates used to determine the sample’s variance, 
and the degrees of freedom for s2 is ∞. Critical values of F for a = 0.05 are 
listed in Appendix 5 for both one-tailed and two-tailed F-tests.

Example 4.17

A manufacturer’s process for analyzing aspirin tablets has a known vari-
ance of 25. A sample of 10 aspirin tablets is selected and analyzed for the 
amount of aspirin, yielding the following results in mg aspirin/tablet.

254    249    252    252    249    249    250    247    251    252

Determine whether there is any evidence of a significant difference be-
tween that the sample’s variance the expected variance at a=0.05.
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Solution

The variance for the sample of 10 tablets is 4.3. The null hypothesis and 
alternative hypotheses are

H s0
2 2: = σ       H sA : 2 2≠σ

The value for Fexp is

   
F

sexp .
.= = =

σ2

2

25
4 3

5 8

The critical value for F(0.05,∞,9) from Appendix 5 is 3.333. Since Fexp 
is greater than F(0.05,∞,9), we reject the null hypothesis and accept the 
alternative hypothesis that there is a significant difference between the 
sample’s variance and the expected variance. One explanation for the dif-
ference might be that the aspirin tablets were not selected randomly. 

4F.3 Comparing Two Sample Variances

We can extend the F-test to compare the variances for two samples, A and 
B, by rewriting equation 4.16 as

F
s
sexp =
A

B

2

2

defining A and B so that the value of Fexp is greater than or equal to 1. 

Example 4.18

Table 4.11 shows results for two experiments to determine the mass of 
a circulating U.S. penny. Determine whether there is a difference in the 
precisions of these analyses at a = 0.05.

Solution

The variances for the two experiments are 0.00259 for the first experiment 
(A) and 0.00138 for the second experiment (B). The null and alternative 
hypotheses are

H s s0
2 2: A B=          H s sA A B: 2 2≠

and the value of Fexp is

F
s
sexp

.

.
.= = =A

B

2

2

0 00259
0 00138

1 88

From Appendix 5, the critical value for F(0.05,6,4) is 9.197. Because 
Fexp < F(0.05,6,4), we retain the null hypothesis. There is no evidence at 
a = 0.05 to suggest that the difference in precisions is significant.
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4F.4 Comparing Two Sample Means

Three factors influence the result of an analysis: the method, the sample, 
and the analyst. We can study the influence of these factors by conducting 
experiments in which we change one of the factors while holding the oth-
ers constant. For example, to compare two analytical methods we can have 
the same analyst apply each method to the same sample, and then examine 
the resulting means. In a similar fashion, we can design experiments to 
compare analysts or to compare samples. 

Before we consider the significance tests for comparing the means of 
two samples, we need to make a distinction between unpaired data and 
paired data. This is a critical distinction and learning to distinguish between 
the two types of data is important. Here are two simple examples that 
highlight the difference between unpaired data and paired data. In each 
example the goal is to compare two balances by weighing pennies.

•  Example 1: Collect 10 pennies and weigh each penny on each balance. 
This is an example of paired data because we use the same 10 pennies 
to evaluate each balance.

• Example 2: Collect 10 pennies and divide them into two groups of 
five pennies each. Weigh the pennies in the first group on one bal-
ance and weigh the second group of pennies on the other balance. 
Note that no penny is weighed on both balances. This is an example 
of unpaired data because we evaluate each balance using a different 
sample of pennies.

In both examples the samples of pennies are from the same population. The 
difference is how we sample the population. We will learn why this distinc-
tion is important when we review the significance test for paired data; first, 
however, we present the significance test for unpaired data. 

unpaiRed data

Consider two analyses, A and B with means of X A  and X B , and standard 
deviations of sA and sB. The confidence intervals for μA and for μB are

Practice Exercise 4.9
To compare two production lots of aspirin tablets, you collect samples 
from each and analyze them, obtaining the following results (in mg as-
pirin/tablet).

Lot 1: 256    248    245    245    244    248    261

Lot 2: 241    258    241    244    256    254

Is there any evidence at a = 0.05 that there is a significant difference in 
the variance between the results for these two samples?

Click here to review your answer to this exercise.

It also is possible to design experiments 
in which we vary more than one of these 
factors. We will return to this point in 
Chapter 14.

One simple test for determining whether 
data are paired or unpaired is to look at 
the size of each sample. If the samples 
are of different size, then the data must 
be unpaired. The converse is not true. If 
two samples are of equal size, they may be 
paired or unpaired.
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µA A
A

A

= ±X
ts
n 4.17

µB B
B

B

= ±X
ts
n 4.18

where nA and nB are the sample sizes for A and B. Our null hypothesis, 
H A B0 : µ µ= , is that and any difference between μA and μB is the result 
of indeterminate errors affecting the analyses. The alternative hypothesis, 
H A BA µ µ: ≠ , is that the difference between μA and μB means is too large 
to be explained by indeterminate error.

To derive an equation for texp, we assume that μA equals μB, and com-
bine equations 4.17 and 4.18.

X
t s

n
X

t s

n
A

A

A

B
B

B

± = ±exp exp

Solving for X XA B−  and using a propagation of uncertainty, gives

X X t
s
n

s
nA B

A

A

B

B

− = × +exp

2 2

4.19

Finally, we solve for texp

t
X X

s
n

s
n

exp =
−

+

A B

A

A

B

B

2 2 4.20

and compare it to a critical value, t(a,n), where a is the probability of a 
type 1 error, and n is the degrees of freedom. 

Thus far our development of this t-test is similar to that for comparing 
X  to μ, and yet we do not have enough information to evaluate the t-test. 
Do you see the problem? With two independent sets of data it is unclear 
how many degrees of freedom we have. 

Suppose that the variances sA2 and sB2 provide estimates of the same s2. 
In this case we can replace sA2  and sB2 with a pooled variance, (spool)

2, that 
provides a better estimate for the variance. Thus, equation 4.20 becomes

t
X X

s
n n

X X

s
n n

n nexp =
−

+

=
−

×
+

A B

pool
A B

A B

pool

A B

A B1 1 4.21

where spool, the pooled standard deviation, is

So how do you determine if it is okay to 
pool the variances? Use an F-test.

Problem 9 asks you to use a propagation 
of uncertainty to show that equation 4.19 
is correct.
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s
n s n s

n npool
A A B B

A B

=
− + −

+ −
( ) ( )1 1

2

2 2

4.22

The denominator of equation 4.22 shows us that the degrees of freedom 
for a pooled standard deviation is nA + nB – 2, which also is the degrees of 
freedom for the t-test.

If sA
2 and sB

2 are significantly different we must calculate texp using 
equation 4.20. In this case, we find the degrees of freedom using the fol-
lowing imposing equation.

n
n
s

n
n
s

n
s

n
s

1 1

2
2 2 2 2

2 2 2

A

A

A

B

B

B

A

A

B

B

o =

+
+

+

+
-

f fp p

> H
4.23

Since the degrees of freedom must be an integer, we round to the nearest 
integer the value of n obtained using equation 4.23.

Regardless of whether we calculate texp using equation 4.20 or equation 
4.21, we reject the null hypothesis if texp is greater than t(a,n), and retained 
the null hypothesis if texp is less than or equal to t(a,n). 4.

Example 4.19

Tables 4.11 provides results for two experiments to determine the mass of 
a circulating U.S. penny. Determine whether there is a difference in the 
means of these analyses at a=0.05.

Solution

First we must determine whether we can pool the variances. This is done 
using an F-test. We did this analysis in Example 4.18, finding no evidence 
of a significant difference.  The pooled standard deviation is

s pool =
− + −

+ −
=

( )( . ) ( )( . )7 1 0 00259 5 1 0 00138
7 5 2

2 2

00 0459.

with 10 degrees of freedom. To compare the means the null hypothesis and 
alternative hypotheses are

H A B0 : µ µ=
       

H A BA µ µ: ≠

Because we are using the pooled standard deviation, we calculate texp using 
equation 4.21.
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texp

. .

.
.=

−
×

×
+

=
3 117 3 081

0 0459
7 5
7 5

1 34

The critical value for t(0.05,10), from Appendix 4, is 2.23. Because texp is 
less than t(0.05,10) we retain the null hypothesis. For a = 0.05 there is no 
evidence that the two sets of pennies are significantly different.

Example 4.20

One method for determining the %w/w Na2CO3 in soda ash is an acid–
base titration. When two analysts analyze the same sample of soda ash they 
obtain the results shown here. 

Determine whether the difference in the mean values is significant at 
a=0.05.

Solution

We begin by summarizing the mean and standard deviation for each ana-
lyst. 

X X

s s
A B

A B

= =

= =

86 83 82 71
0 32 2 16

. % . %
. .

To determine whether we can use a pooled standard deviation, we first 
complete an F-test of the following null and alternative hypotheses.

H s s0
2 2: A B=      H s sA A B: 2 2≠

Calculating Fexp, we obtain a value of

Fexp

( . )
( . )

.= =
2 16
0 32

45 6
2

2

Because Fexp is larger than the critical value of 7.15 for F(0.05,5,5) from 
Appendix 5, we reject the null hypothesis and accept the alternative hy-
pothesis that there is a significant difference between the variances. As a 
result, we cannot calculate a pooled standard deviation.

Analyst A Analyst B
86.82 81.01
87.04 86.15
86.93 81.73
87.01 83.19
86.20 80.27
87.00 83.94
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To compare the means for the two analysts we use the following null and 
alternative hypotheses.

H A B0 : µ µ=
   

H A BA µ µ: ≠

Because we cannot pool the standard deviations, we calculate texp using 
equation 4.20 instead of equation 4.21

texp

. .

( . ) ( . )
.=

−

+

=
86 83 82 71

0 32
6

2 16
6

4 62
2 2

and calculate the degrees of freedom using equation 4.23.

o =

6+ 1
6

(0 . 32) 2

e o
2

+
6+ 1

6
(2 . 16) 2

e o
2

6
(0 . 32) 2

+
6

(2 . 16) 2

= G
2

- 2 = 5 . 3 . 5

From Appendix 4, the critical value for t(0.05,5) is 2.57. Because texp is 
greater than t(0.05,5) we reject the null hypothesis and accept the alterna-
tive hypothesis that the means for the two analysts are significantly differ-
ent at a = 0.05.

paiRed data

Suppose we are evaluating a new method for monitoring blood glucose 
concentrations in patients. An important part of evaluating a new method 
is to compare it to an established method. What is the best way to gath-
er data for this study? Because the variation in the blood glucose levels 
amongst patients is large we may be unable to detect a small, but significant 

Practice Exercise 4.10
To compare two production lots of aspirin tablets, you collect samples 
from each and analyze them, obtaining the following results (in mg as-
pirin/tablet).

Lot 1: 256    248    245    245    244    248    261

Lot 2: 241    258    241    244    256    254

Is there any evidence at a = 0.05 that there is a significant difference in 
the variance between the results for these two samples? This is the same 
data from Practice Exercise 4.9.

Click here to review your answer to this exercise.

Typical blood glucose levels for most 
non-diabetic individuals ranges between 
80–120 mg/dL (4.4–6.7 mM), rising to as 
high as 140 mg/dL (7.8 mM) shortly after 
eating. Higher levels are common for indi-
viduals who are pre-diabetic or diabetic.
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difference between the methods if we use different patients to gather data 
for each method. Using paired data, in which the we analyze each patient’s 
blood using both methods, prevents a large variance within a population 
from adversely affecting a t-test of means.

When using paired data we first calculate the difference, di, between 
the paired values for each sample. Using these difference values, we then 
calculate the average difference, d , and the standard deviation of the dif-
ferences, sd. The null hypothesis, H d0 0: = , is that there is no difference 
between the two samples, and the alternative hypothesis, H dA : ≠ 0 , is 
that the difference between the two samples is significant.

The test statistic, texp, is derived from a confidence interval around d

t
d n

sd
exp =

where n is the number of paired samples. As is true for other forms of the 
t-test, we compare texp to t(a,n), where the degrees of freedom, n, is n – 1. 
If texp is greater than t(a,n), then we reject the null hypothesis and accept 
the alternative hypothesis. We retain the null hypothesis if texp is less than 
or equal to t(a,n). This is known as a paired t-test.

Example 4.21

Marecek et. al. developed a new electrochemical method for rapidly deter-
mining the concentration of the antibiotic monensin in fermentation vats.7 
The standard method for the analysis, a test for microbiological activity, 
is both difficult and time consuming. Samples were collected from the 
fermentation vats at various times during production and analyzed for the 
concentration of monensin using both methods. The results, in parts per 
thousand (ppt), are reported in the following table.

7 Marecek, V.; Janchenova, H.; Brezina, M.; Betti, M. Anal. Chim. Acta 1991, 244, 15–19.

Sample Microbiological Electrochemical
1 129.5 132.3
2 89.6 91.0
3 76.6 73.6
4 52.2 58.2
5 110.8 104.2
6 50.4 49.9
7 72.4 82.1
8 141.4 154.1
9 75.0 73.4
10 34.1 38.1
11 60.3 60.1
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Is there a significant difference between the methods at a = 0.05?

Solution

Acquiring samples over an extended period of time introduces a substantial 
time-dependent change in the concentration of monensin. Because the 
variation in concentration between samples is so large, we use paired t-test 
with the following null and alternative hypotheses.

H d0 0: =         H dA : ≠ 0

Defining the difference between the methods as

d X Xi i i
=( ) −( )elect micro

we can calculate the following differences for the samples.

Sample 1 2 3 4 5 6 7 8 9 10 11
di 2.8 1.4 -3.0 6.0 -6.6 -0.5 9.7 12.7 -1.6 4.0 -0.2

The mean and standard deviation for the differences are, respectively, 2.25 
and 5.63. The value of texp is

texp

.

.
.= =

2 25 11

5 63
1 33

which is smaller than the critical value of 2.23 for t(0.05,10) from Appen-
dix 4. We retain the null hypothesis and find no evidence for a significant 
difference in the methods at a = 0.05.

One important requirement for a paired t-test is that determinate and 
indeterminate errors affecting the analysis must be independent of the ana-

Practice Exercise 4.11
Suppose you are studying the distribution of zinc in a 
lake and want to know if there is a significant difference 
between the concentration of Zn2+ at the sediment-
water interface and its concentration at the air-water 
interface. You collect samples from six locations—near 
the lake’s center, near its drainage outlet, etc.—obtain-
ing the results (in mg/L) shown in the table. Using the 
data in the table shown to the right, determine if there 
is a significant difference between the concentration of 
Zn2+ at the two interfaces at a = 0.05. 

Complete this analysis treating the data as (a) unpaired, and (b) paired. Briefly comment on your results.

Click here to review your answers to this exercise.

Location Air-Water 
Interface

Sediment-Water 
Interface

1 0.430 0.415
2 0.266 0.238
3 0.457 0.390
4 0.531 0.410
5 0.707 0.605
6 0.716 0.609
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lyte’s concentration. If this is not the case, then a sample with an unusually 
high concentration of analyte will have an unusually large di. Including 
this sample in the calculation of d and sd leads to a biased estimate of 
the expected mean and standard deviation. This is rarely a problem for 
samples spanning a limited range of analyte concentrations, such as those 
in Example 4.21 or Practice Exercise 4.11. When paired data span a wide 
range of concentrations, however, the magnitude of the determinate and 
indeterminate sources of error may not be independent of the analyte’s con-
centration. In such cases a paired t-test may give misleading results since the 
paired data with the largest absolute determinate and indeterminate errors 
will dominate d . In this situation a regression analysis, which is the subject 
of the next chapter, is more appropriate method for comparing the data.

4F.5 Outliers

Earlier in the chapter we examined several data sets consisting of the mass 
of a circulating United States penny. Table 4.16 provides one more data set. 
Do you notice anything unusual in this data? Of the 112 pennies included 
in Table 4.11 and Table 4.13, no penny weighed less than 3 g. In Table 4.16, 
however, the mass of one penny is less than 3 g. We might ask whether this 
penny’s mass is so different from the other pennies that it is in error.

Data that are not consistent with the remaining data are called outli-
ers. An outlier might exist for many reasons: the outlier might be from 
a different population (Is this a Canadian penny?); the outlier might be a 
contaminated or otherwise altered sample (Is the penny damaged?); or the 
outlier may result from an error in the analysis (Did we forget to tare the 
balance?). Regardless of its source, the presence of an outlier compromises 
any meaningful analysis of our data. There are many significance tests for 
identifying potential outliers, three of which we present here. 

dixon’S Q-teSt

One of the most common significance tests for outliers is Dixon’s Q-test. 
The null hypothesis is that there are no outliers, and the alternative hy-
pothesis is that there is an outlier. The Q-test compares the gap between 
the suspected outlier and its nearest numerical neighbor to the range of the 
entire data set (Figure 4.15). The test statistic, Qexp, is

Qexp = =
−gap

range

outlier s value nearest value'

llargest value smallest value−

Table 4.16  Mass (g) for Additional Sample of Circulating U. S. Pennies
3.067 2.514 3.094
3.049 3.048 3.109
3.039 3.079 3.102
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This equation is appropriate for evaluating a single outlier. Other forms of 
Dixon’s Q-test allow its extension to detecting multiple outliers.8 

The value of Qexp is compared to a critical value, Q(a, n), where a is 
the probability of rejecting a valid data point (a type 1 error) and n is the 
total number of data points. To protect against rejecting a valid data point, 
we usually apply the more conservative two-tailed Q-test, even though the 
possible outlier is the smallest or the largest value in the data set. If Qexp is 
greater than Q(a, n), then we reject the null hypothesis and may exclude 
the outlier. We retain the possible outlier when Qexp is less than or equal 
to Q(a, n). Table 4.17 provides values for Q(0.05, n) for a sample contain-
ing 3–10 values. A more extensive table is in Appendix 6. Values for Q(a, 
n) assume an underlying normal distribution.

gRuBB’S teSt

Although Dixon’s Q-test is a common method for evaluating outliers, it is no 
longer favored by the International Standards Organization (ISO), which 
now recommends Grubb’s test.9 There are several versions of Grubb’s test 
depending on the number of potential outliers. Here we will consider the 
case where there is a single suspected outlier.

The test statistic for Grubb’s test, Gexp, is the distance between the 
sample’s mean, X , and the potential outlier, Xout, in terms of the sample’s 
standard deviation, s.

G
X X

s
out

exp =
−

We compare the value of Gexp to a critical value G(a,n), where a is the prob-
ability of rejecting a valid data point and n is the number of data points in 
the sample. If Gexp is greater than G(a,n), we may reject the data point as an 
8 Rorabacher, D. B. Anal. Chem. 1991, 63, 139–146.
9 International Standards ISO Guide 5752-2 “Accuracy (trueness and precision) of measurement 

methods and results–Part 2: basic methods for the determination of repeatability and reproduc-
ibility of a standard measurement method,” 1994.

Figure 4.15 Dotplots showing the 
distribution of two data sets con-
taining a possible outlier. In (a) 
the possible outlier’s value is larger 
than the remaining data, and in 
(b) the possible outlier’s value is 
smaller than the remaining data.

Table 4.17 Dixon’s Q-Test
n Q(0.05, n)
3 0.970
4 0.829
5 0.710
6 0.625
7 0.568
8 0.526
9 0.493
10 0.466

Gap

Gap

Range

Range

(a)

(b)

d
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outlier, otherwise we retain the data point as part of the sample. Table 4.18 
provides values for G(0.05, n) for a sample containing 3–10 values. A more 
extensive table is in Appendix 7. Values for G(a, n) assume an underlying 
normal distribution.

chauvenet’S cRiteRion

Our final method for identifying outliers is Chauvenet’s criterion. Un-
like Dixon’s Q-Test and Grubb’s test, you can apply this method to any 
distribution as long as you know how to calculate the probability for a 
particular outcome. Chauvenet’s criterion states that we can reject a data 
point if the probability of obtaining the data point’s value is less than (2n)–1, 
where n is the size of the sample. For example, if n = 10, a result with a 
probability of less than (2×10)–1, or 0.05, is considered an outlier. 

To calculate a potential outlier’s probability we first calculate its stan-
dardized deviation, z

z
X X

s
=

−out

where Xout is the potential outlier, X is the sample’s mean and s is the 
sample’s standard deviation. Note that this equation is identical to the equa-
tion for Gexp in the Grubb’s test. For a normal distribution, you can find 
the probability of obtaining a value of z using the probability table in Ap-
pendix 3.

Example 4.22

Table 4.16 contains the masses for nine circulating United States pennies. 
One of the values, 2.514 g, appears to be an outlier. Determine if this 
penny is an outlier using the Q-test, Grubb’s test, and Chauvenet’s crite-
rion. For the Q-test and Grubb’s test, let a = 0.05.

Solution

For the Q-test the value for Qexp is

Qexp

. .

. .
.=

−

−
=

2 514 3 039

3 109 2 514
0 882

From Table 4.17, the critical value for Q(0.05,9) is 0.493. Because Qexp 
is greater than Q(0.05,9), we can assume that penny weighing 2.514 g is 
an outlier.

For Grubb’s test we first need the mean and the standard deviation, which 
are 3.011 g and 0.188 g, respectively. The value for Gexp is

Gexp

. .

.
.=

−
=

2 514 3 011

0 188
2 64

Table 4.18 Grubb’s Test
n G(0.05, n)
3 1.115
4 1.481
5 1.715
6 1.887
7 2.020
8 2.126
9 2.215
10 2.290
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Using Table 4.18, we find that the critical value for G(0.05,9) is 2.215. Be-
cause Gexp is greater than G(0.05,9), we can assume that the penny weigh-
ing 2.514 g is an outlier.

For Chauvenet’s criterion, the critical probability is (2×9)–1, or 0.0556. 
The value of z is the same as Gexp, or 2.64. Using Appendix 3, the probabil-
ity for z = 2.64 is 0.00415. Because the probability of obtaining a mass of 
0.2514 g is less than the critical probability, we can assume that the penny 
weighing 2.514 g is an outlier. 

You should exercise caution when using a significance test for outliers 
because there is a chance you will reject a valid result. In addition, you 
should avoid rejecting an outlier if it leads to a precision that is unreason-
ably better than that expected based on a propagation of uncertainty. Given 
these two concerns it is not surprising that some statisticians caution against 
the removal of outliers.10 

On the other hand, testing for outliers can provide useful information if 
you try to understand the source of the suspected outlier. For example, the 
outlier in Table 4.16 represents a significant change in the mass of a penny 
(an approximately 17% decrease in mass), which is the result of a change 
in the composition of the U.S. penny. In 1982 the composition of a U.S. 
penny was changed from a brass alloy consisting of 95% w/w Cu and 5% 
w/w Zn, to a zinc core covered with copper.11 The pennies in Table 4.16, 
therefore, were drawn from different populations.

4G Detection Limits
The International Union of Pure and Applied Chemistry (IUPAC) defines 
a method’s detection limit as the smallest concentration or absolute 
amount of analyte that has a signal significantly larger than the signal from 
a suitable blank.12 Although our interest is in the amount of analyte, in this 
section we will define the detection limit in terms of the analyte’s signal. 
Knowing the signal you can calculate the analyte’s concentration, CA, or 
the moles of analyte, nA, using the equations

SA = kACA   or   SA = kAnA

where k is the method’s sensitivity.
Let’s translate the IUPAC definition of the detection limit into a math-

ematical form by letting Smb represent the average signal for a method blank, 
and letting smb represent the method blank’s standard deviation. The null 
hypothesis is that the analyte is not present in the sample, and the alterna-

10 Deming, W. E. Statistical Analysis of Data; Wiley: New York, 1943 (republished by Dover: New 
York, 1961); p. 171.

11 Richardson, T. H. J. Chem. Educ. 1991, 68, 310–311.
12 IUPAC Compendium of Chemical Technology, Electronic Version, http://goldbook.iupac.org/

D01629.html

You also can adopt a more stringent re-
quirement for rejecting data. When using 
the Grubb’s test, for example, the ISO 
5752 guidelines suggest retaining a value 
if the probability for rejecting it is greater 
than a = 0.05, and flagging a value as a 
“straggler” if the probability for rejecting 
it is between a = 0.05 and 0.01. A “strag-
gler” is retained unless there is compelling 
reason for its rejection. The guidelines rec-
ommend using a = 0.01 as the minimum 
criterion for rejecting a data point.

See Chapter 3 for a review of these equa-
tions.

 http://goldbook.iupac.org/D01629.html
 http://goldbook.iupac.org/D01629.html
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tive hypothesis is that the analyte is present in the sample. To detect the 
analyte, its signal must exceed Smb by a suitable amount; thus,  

( )S S zA DL mb mb= + σ 4.24

where (SA)DL is the analyte’s detection limit . 
The value we choose for z depends on our tolerance for reporting the 

analyte’s concentration even though it is absent from the sample (a type 
1 error). Typically, z is set to three, which, from Appendix 3, corresponds 
to a probability, a, of 0.00135. As shown in Figure 4.16a, there is only a 
0.135% probability of detecting the analyte in a sample that actually is 
analyte-free. 

A detection limit also is subject to a type 2 error in which we fail to find 
evidence for the analyte even though it is present in the sample. Consider, 
for example, the situation shown in Figure 4.16b where the signal for a 
sample containing the analyte is exactly equal to (SA)DL. In this case the 
probability of a type 2 error is 50% because half of the signals arising from 
such samples are below the detection limit. We will correctly detect the ana-
lyte at the IUPAC detection limit only half the time. The IUPAC definition 
for the detection limit indicates the smallest signal for which we can say, at 
a significance level of a, that an analyte is present in the sample. Failing to 
detect the analyte does not imply that it is not present in the sample.

The detection limit is often represented, particularly when discussing 
public policy issues, as a distinct line separating detectable concentrations 

If smb is not known, we can replace it 
with smb; equation 4.24 then becomes

( )S S
ts

n
A DL mb

mb= +

 
You can make similar adjustments to other 
equations in this section.

See, for example, Kirchner, C. J. “Estima-
tion of Detection Limits for Environmen-
tal Analytical Procedures,” in Currie, L. 
A. (ed) Detection in Analytical Chemistry: 
Importance, Theory, and Practice; Ameri-
can Chemical Society: Washington, D. 
C., 1988.

Figure 4.16 Normal distribution curves showing the probability of type 1 and type 2 errors for the IUPAC 
detection limit. (a) The normal distribution curve for the method blank, with Smb = 0 and smb = 1. The 
minimum detectable signal for the analyte, (SA)DL, has a type 1 error of 0.135%. (b) The normal distribu-
tion curve for the analyte at its detection limit, (SA)DL = 3, is superimposed on the normal distribution curve 
for the method blank. The standard deviation for the analyte’s signal, sA, is  0.8, The area in green represents 
the probability of a type 2 error, which is 50%. The inset shows, in blue, the probability of a type 1 error, 
which is 0.135%.

Smb (SA)DL = Smb + 3σmb

Type 1 Error = 0.135%

Type 2 Error = 50.0%

Smb (SA)DL = Smb + 3σmb

Type 1 Error = 0.135%

(a) (b)

d
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of analytes that concentrations that cannot be detected. This use of a de-
tection limit is incorrect.13 As suggested by Figure 4.16, for concentrations 
of analyte near the detection limit there is a high probability of failing to 
detect the analyte. 

An alternative expression for the detection limit, the limit of identi-
fication, minimizes both type 1 and type 2 errors.14 The analyte’s signal 
at the limit of identification, (SA)LOI, includes an additional term, zsA, to 
account for the distribution of the analyte’s signal.

( ) ( )S S z S z zA LOI A DL A mb mb A= + = + +σ σ σ

As shown in Figure 4.17, the limit of identification provides an equal prob-
ability for type 1 and type 2 errors at the detection limit. When the ana-
lyte’s concentration is at its limit of identification, there is only a 0.135% 
probability that its signal will be indistinguishable from that of the method 
blank. 

The ability to detect the analyte with confidence is not the same as 
the ability to report with confidence its concentration, or to distinguish 
between its concentration in two samples. For this reason the American 
Chemical Society’s Committee on Environmental Analytical Chemistry 
recommends the limit of quantitation, (SA)LOQ.15 

( )S SA LOQ mb mb= +10σ

13 Rogers, L. B. J. Chem. Educ. 1986, 63, 3–6.
14 Long, G. L.; Winefordner, J. D. Anal. Chem. 1983, 55, 712A–724A.
15 “Guidelines for Data Acquisition and Data Quality Evaluation in Environmental Chemistry,” 

Anal. Chem. 1980, 52, 2242–2249.

Smb (SA)LOI(SA)DL 

Figure 4.17 Normal distribution curves for a method blank and for a 
sample at the limit of identification: Smb = 0; smb = 1; sA = 0.8; and 
(SA)LOI = 0 + 3 × 1 + 3 × 0.8 = 5.4. The inset shows that the prob-
ability of a type 1 error (0.135%) is the same as the probability of a 
type 2 error (0.135%).
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4H Using Excel and R to Analyze Data
Although the calculations in this chapter are relatively straightforward, it 
can be tedious to work problems using nothing more than a calculator. 
Both Excel and R include functions for descriptive statistics, for finding 
probabilities for different distributions, and for carrying out significance 
tests. In addition, R provides useful functions for visualizing your data. 

4H.1 Excel

Excel provides two methods for working with data: built-in functions for 
individual statistical parameters and a package of data analysis tools in the 
Analysis ToolPak. The ToolPak is not a standard part of Excel’s instillation. 
To see if you have access to the Analysis ToolPak on your computer, select 
Tools from the menu bar and look for the Data Analysis... option. If you 
do not see Data Analysis..., select Add-ins... from the Tools menu. Check 
the box for the Analysis ToolPak and click on OK to install them. 

deScRiptive StatiSticS

Let’s use Excel to provide a statistical summary of the data in Table 4.1. 
Enter the data into a spreadsheet, as shown in Figure 4.18. Select Data 
Analysis... from the Tools menu, which opens a window entitled “Data 
Analysis.” Scroll through the window, select Descriptive Statistics from the 
available options, and click OK. Place the cursor in the box for the “Input 
Range” and then click and drag over the cells B1:B8. Check the box for 
“Labels in the first row.” Select the radio button for “Output range,” place the 
cursor in the box and click on an empty cell; this is where Excel will place 
the results. Check the boxes for “Summary statistics” and for the “Confidence 
level for the mean.” Accept the default value of 95% for the confidence level. 
Clicking OK generates the information shown in Figure 4.19.

A B
1 mass (g)
2 3.080
3 3.094
4 3.107
5 3.056
6 3.112
7 3.174
8 3.198

Figure 4.18 Portion of a spread-
sheet containing data from Ta-
ble 4.1. mass (g)

Mean 3.11728571
Standard Error 0.01924369
Median 3.107
Mode #N/A
Standard Deviation 0.05091403
Sample Variance 0.00259224
Kurtosis -0.59879248
Skewness 0.72905145
Range 0.142
Minimum 3.056
Maximum 3.198
Sum 21.821
Count 7
Confidence Level(95.0%) 0.04708762

Figure 4.19 Output from Excel’s Descriptive Statistics command in 
the Analysis TookPak. Note that Excel does not adjust for significant 
figures. The mode is the most common result, which is not relevant 
here. Kurtosis is a measure of the “peakedness” of the data’s distribu-
tion, and is zero for a normal distribution. Skewness is a measure 
of the symmetry of the data’s distribution and is zero for a normal 
distribution. For a small sample size—such as the seven samples in 
this data set—skewness and kurtosis are not particularly useful. You 
may consult the textbooks listed in the Additional Resources for 
more information about kurtosis and skewness.

Once you install the Analysis ToolPak, it 
will continue to load each time you launch 
Excel.
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The Descriptive Statistics command provides a table of values for a 
sample. If your interest is in a statistical summary for a population, or if 
you do not want a summary of all descriptive statistics, you will need to use 
Excel’s built-in functions (Table 4.19). To use a function, click on an empty 
cell, enter the formula, and press Return or Enter. To find, for example, 
the population variance for the data in Figure 4.18, place the cursor in an 
empty cell and enter the formula

=varp(b2:b8)

The contents of the cell are replaced with Excel’s exact calculation of the 
population’s variance (0.002 221 918).

pRoBaBility diStRiButionS

In Example 4.11 we showed that 91.10% of a manufacturer’s analgesic 
tablets contain between 243 and 262 mg of aspirin. We obtained this re-
sult by calculating the deviation, z, of each limit from the population’s ex-
pected mean, μ, of 250 mg in terms of the population’s expected standard 
deviation, s, of 5 mg. After calculating values for z, we used the table in 
Appendix 3 to find the area under the normal distribution curve between 
the two limits.   

We can complete this calculation in Excel using the built-in normdist 
function. The function’s general format is

=normdist(x, μ, s, TRUE)

where x is the limit of interest. The function returns the probability of ob-
taining a result of less than x from a normal distribution with a mean of μ 
and a standard deviation of s (Figure 4.20). To solve Example 4.11 using 
Excel enter the following formulas into separate cells

=normdist(243, 250, 5, TRUE)

=normdist(262, 250, 5, TRUE)

x

Figure 4.20 Shown in blue is the 
area returned by the function
=normdist(x, μ, s,TRUE)

Table 4.19 Excel Functions for Descriptive Statistics
Parameter Excel Function

mean =average(number1,number2,...)
median =median(number1,number2,...)
sample standard deviation =stdev(number1,number2,...)
population standard deviation =stdevp(number1,number2,...)
sample variance =var(number1,number2,...)
population variance =varp(number1,number2,...)
range =max((number1,number2,...) – min(number1,number2,...)
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obtaining results of 0.080 756 659 and 0.991 802 464. Subtract the smaller 
value from the larger value and adjust to the correct number of significant 
figures to arrive at a probability of 0.9910, or 99.10%.

Excel also includes a function for binomial distributions. The function’s 
format is

=binomdist(X, N, p, T/F)

where X is the number of times a particular outcome occurs in N trials,  and 
p is the probability of X occurring in one trial. Setting the function’s last 
term to TRUE gives the total probability for any result up to X and  setting 
it to FALSE to give the probability for X. Using Example 4.10 to test this 
function, we find that the probability of finding no atoms of 13C atoms in 
a molecule of cholesterol, C27H44O) using the formula

=binomdist(0, 27, 0.0111, FALSE)

which returns a value of 0.740 as an answer, after adjusting the significant 
figures. Using the formula

=binomdist(2, 27, 0.0111, TRUE)

we find that 99.7% of cholesterol molecules contain two or fewer atoms 
of 13C.

Significance teStS

Excel’s Analysis ToolPak includes tools to help you complete the following 
significance tests covered in this chapter: 

• an F-test of variances
• an unpaired t-test of sample means assuming equal variances
• an unpaired t-test of sample means assuming unequal variances
• a paired t-test for of sample means 

Let’s use the ToolPak to complete a t-test on the data in Table 4.11, which 
contains results for two experiments to determine the mass of a circulating 
U. S. penny. Enter the data from Table 4.11 into a spreadsheet as shown 
in Figure 4.21. Because the data in this case are unpaired, we will use 
Excel to complete an unpaired t-test. Before we can complete a t-test we 
must use an F-test to determine whether the variances for the two data sets 
are equal or unequal. Our null hypothesis is that the variances are equal, 
s sSet 1

2
Set 2
2= , and our alternative hypothesis is that the variances are not 

equal, s sSet 1
2

Set 2
2≠ . 

To complete the F-test select Data Analysis... from the Tools menu, 
which opens a window entitled “Data Analysis.” Scroll through the window, 
select F-Test Two Sample Variance from the available options, and click 
OK. Place the cursor in the box for the “Variable 1 range” and then click 
and drag over the cells B1:B8. Next, place the cursor in the box for “Vari-
able 2 range” and then click and drag over the cells B1:B6. Check the box 

A B C
1 Set 1 Set 2
2 3.080 3.052
3 3.094 3.141
4 3.107 3.083
5 3.056 3.083
6 3.112 3.048
7 3.174
8 3.198

Figure 4.21 Portion of a spreadsheet con-
taining the data in Table 4.11.
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for “Labels.” In the box for “Alpha” enter your value for a. Excel’s F-test is 
a one-tailed test, so if you wish to complete a two-tailed test, as we do in 
this example, divide your a value by 2. We want our F-test to use an a of 
0.05, so we enter 0.025 in the box for “Alpha.” Select the radio button for 

“Output range,” place the cursor in the box and click on an empty cell; this 
is where Excel will place the results. Clicking OK generates the information 
shown in Figure 4.22. Because Fexp, which is 1.87, is less than F(0.05, 6, 
4), which is 9.20, we retain the null hypothesis and have no evidence of a 
difference between the variances at an a of 0.05. 

Having found no evidence suggesting unequal variances, we now com-
plete an unpaired t-test assuming equal variances. Our null hypothesis is that 
there is no difference between the means, X XSet 1 Set 2= , and our alternative 
hypothesis is that there is a difference between the means, X XSet 1 Set 2≠ . 
To complete the t-test select Data Analysis... from the Tools menu, which 
opens a window entitled “Data Analysis.” Scroll through the window, select 
t-Test Two Sample Assuming Equal Variances from the available options, 
and click OK. Place the cursor in the box for the “Variable 1 range” and 
then click and drag over the cells B1:B8. Next, place the cursor in the box 
for “Variable 2 range” and then click and drag over the cells B1:B6. In the 
box for “Hypothesized mean difference,” enter a value of 0. Check the box 
for “Labels.” In the box for “Alpha” enter your value for a. Select the radio 
button for “Output range,” place the cursor in the box and click on an 
empty cell; this is where Excel will place the results. Clicking OK generates 
the information shown in Figure 4.23. Because texp, which is 1.33, is less 
than t(0.05, 10), which is 2.23, we retain the null hypothesis and have no 
evidence of a difference between the means at an a of 0.05.

The other significance tests in Excel work in the same format. The fol-
lowing practice exercise provides you with an opportunity to test yourself.

F-Test Two-Sample for Variances

Data Set 1 Data Set 2
Mean 3.11728571 3.0814
Variance 0.00259224 0.0013843
Observations 7 5
df 6 4
F 1.87259849
P(F<=f) one-tail 0.28305251
F Critical one-tail 9.19731108

Figure 4.22 Output from Excel’s F-test in the Analysis TookPak. Note that results are for a one-tailed F-test. The 
value for “P(F<=f ) one-tail” is the probability of incorrectly rejecting the null hypothesis of equal variances, and 
the value for “F Critical one-tail” is equivalent to a one-tailed F(0.025, 6, 4). For a two-tailed F-test, the prob-
ability of incorrectly rejecting the null hypothesis is 2 × P(F<=f ), or 0.566, and F Critical is for F(0.05, 6, 4). 
Note: Excel assumes that the variance for variable 1 is greater than the variance for variable 2; thus, you must assign 
variable 1 to the data set with the larger of the two variances in order to correctly interpret the F-test.

See Example 4.18 for our earlier solution 
to this problem.

See Example 4.19 for our earlier solution 
to this problem.
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4H.2 R

R is a programming environment that provides powerful capabilities for 
analyzing data. There are many functions built into R’s standard installa-
tion and additional packages of functions are available from the R web site 
(www.r-project.org). Commands in R are not available from pull down 
menus. Instead, you interact with R by typing in commands.

deScRiptive StatiSticS

Let’s use R to provide a statistical summary of the data in Table 4.1. To do 
this we first need to create an object containing the data, which we do by 
typing in the following command.

> penny1=c(3.080, 3.094, 3.107, 3.056, 3.112, 3.174, 3.198)
Table 4.20 lists the commands in R for calculating basic descriptive statis-
tics. As is true for Excel, R does not include stand alone commands for all 
statistics of interest, but we can calculate them using other commands. Us-
ing a command is easy—simply enter the appropriate code ; for example, to 
find the sample’s variance enter the appropriate command at the prompt.

> var(penny1)
[1] 0.002221918

Figure 4.23 Output from Excel’s t-test assuming equal variances in the Analysis TookPak. The absolute value 
of “t Stat” is equivalent to texp (note: because Excel subtracts the mean for variable 2 from the mean for variable 1, t 
Stat may be positive or negative). The values of “P(T<=t) one-tail” and of “P(T<=t) two-tail” are the probabilities 
of incorrectly rejecting the null hypothesis for a one-tailed or for a two-tailed t-test. The values for “t Critical 
one-tail” and for “t Critical two tail” are t(0.05, 10) for a one-tailed and two-tailed t-test, respectively.

Practice Exercise 4.12
Rework Example 4.20 and Example 4.21 using Excel’s Analysis Tool-
Pak.

Click here to review your answers to this exercise.

In R, the symbol ‘>’ is a prompt indicating 
that the program is waiting for you to en-
ter a command. When you press ‘Return’ 
or ‘Enter,’ R executes the command.

t-Test: Two-Sample Assuming Equal Variances

Data Set 1 Data Set 2
Mean 3.11728571 3.0814
Variance 0.00259224 0.0013843
Observations 7 5
Pooled Variance 0.00210906
Hypothesized Mean Difference 0
df 10
t Stat 1.33450508
P(T<=t) one-tail 0.10581382
t Critical one-tail 1.8124611
P(T<=t) two-tail 0.21162765
t Critical two-tail 2.22813884

d

www.r-project.org


125Chapter 4 Evaluating Analytical Data

pRoBaBility diStRiButionS

In Example 4.11 we showed that 91.10% of a manufacturer’s analgesic 
tables contain between 243 and 262 mg of aspirin. We obtained this result 
by calculating the deviation, z, of each limit from the population’s expected 
mean, μ, of 250 mg in terms of the population’s expected standard devia-
tion , s, of 5 mg. After calculating values for z, we used the table in Ap-
pendix 3 to find the area under the normal distribution curve between the 
two limits.   

We can complete this calculation in R using the function pnorm. The 
function’s general format is

pnorm(x, μ, s)

where x is the limit of interest, μ is the distribution’s expected mean and s 
is the distribution’s expected standard deviation. The function returns the 
probability of obtaining a result of less than x (Figure 4.24). Here is the 
output of an R session for solving Example 4.11.

> pnorm(243,250,5)
[1] 0.08075666
> pnorm(262,250,5)
[1] 0.9918025

Subtracting the smaller value from the larger value and adjusting to the 
correct number of significant figures gives the probability as 0.9910, or 
99.10%.

R also includes functions for binomial distributions. To find the prob-
ability of obtaining a particular outcome, X, in N trials we use the dbinom 
function.

dbinom(X, N, p)

where p is the probability of X occurring in one trial. Using Example 4.10 
to test this function, we find that the probability of finding no atoms of 
13C atoms in a molecule of cholesterol, C27H44O) is

Table 4.20 R Functions for Descriptive Statistics
Parameter R Function

mean mean(object)
median median(object)
sample standard deviation sd(object)
population standard deviation sd(object)*((length(object)-1)/length(object))^0.5
sample variance var(object)
population variance var(object)*((length(object)-1)/length(object))
range max(object)-min(object)

x

Figure 4.24 Shown in blue is the 
area returned by the function

pnorm(x, μ, s)
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> dbinom(0,27,0.0111)
[1] 0.7397997

0.740 after adjusting the significant figures. To find the probability of ob-
taining any outcome up to a maximum value of X, we use the pbinom 
function.

pbinom(X, N, p)

To find the percentage of cholesterol molecules containing 0, 1, or 2 atoms 
of 13C, we enter

> pbinom(2,27,0.0111)
[1] 0.9967226

 and find that the answer is 99.7% of cholesterol molecules.

Significance teStS

R includes commands to help you complete the following significance tests 
covered in this chapter: 

• an F-test of variances
• an unpaired t-test of sample means assuming equal variances
• an unpaired t-test of sample means assuming unequal variances
• a paired t-test for of sample means
• Dixon’s Q-test for outliers
• Grubb’s test for outliers

Let’s use R to complete a t-test on the data in Table 4.11, which contains 
results for two experiments to determine the mass of a circulating U. S. 
penny. To do this, enter the data from Table 4.11 into two objects.

> penny1=c(3.080, 3.094, 3.107, 3.056, 3.112, 3.174, 3.198)
> penny2=c(3.052, 3.141, 3.083, 3.083, 3.048)

Because the data in this case are unpaired, we will use R to complete an 
unpaired t-test. Before we can complete a t-test we must use an F-test to 
determine whether the variances for the two data sets are equal or unequal. 
Our null hypothesis is that the variances are equal, s sSet 1

2
Set 2
2= , and our 

alternative hypothesis is that the variances are not equal, s sSet 1
2

Set 2
2≠ . 

The command for a two-tailed F-test in R, which is our choice for this 
problem, is 

var.test(X, Y)

where X and Y are the objects containing the data sets. Figure 4.25 shows 
the output from an R session to solve this problem.

R does not provide the critical value for F(0.05, 6, 4). Instead it reports 
the 95% confidence interval for Fexp. Because this confidence interval of 
0.204 to 11.661 includes the expected value for F of 1.00, we retain the 
null hypothesis and have no evidence for a difference between the variances. 

For a one-tailed F-test the command is 
one of the following

var.test(X, Y, alternative = “greater”)

var.test(X, Y, alternative = “less”)

where “greater” is used when the alterna-

tive hypothesis is s s
X Y

2 2> , and “less” is 
used when the alternative hypothesis is 

s s
X Y

2 2< .
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R also provides the probability of incorrectly rejecting the null hypothesis, 
which in this case is 0.5561.

Having found no evidence suggesting unequal variances, we now com-
plete an unpaired t-test assuming equal variances. Our null hypothesis is that 
there is no difference between the means, X XSet 1 Set 2= , and our alternative 
hypothesis is that there is a difference between the means, X XSet 1 Set 2≠ . In 
R there is a single command for all two-sample t-tests. The basic syntax for 
a two-tailed unpaired t-test with unequal variances is

t.test(X, Y, mu = 0, paired = FALSE, var.equal = FALSE)

where X and Y are the objects containing the data sets. You can change 
the underlined terms to alter the nature of the t-test. Replacing “var.equal 
= FALSE” to “var.equal = TRUE” makes this a two-tailed t-test with equal 
variances, and replacing “paired = FALSE” with “paired = TRUE” makes 
this a paired t-test. The term “mu = 0” is the expected difference between 
the means, which for a null hypothesis of  X XSet 1 Set 2=  is 0. You can, of 
course, change this to suit your needs. The underlined terms are default 
values; if you omit them, then R assumes that you intend an unpaired two-
tailed t-test of the null hypothesis that X = Y with unequal variances. Figure 
4.26 shows the output of an R session for this problem.

The p-value of 0.2116 means that there is a 21.16% probability of 
incorrectly rejecting the null hypothesis. The 95% confidence interval of 
-0.024 to 0.0958, which is for the difference between the sample means, 
includes the expected value of zero. Both ways of looking at the results of 
the t-test provide no evidence for rejecting the null hypothesis; thus, we 
retain the null hypothesis and find no evidence for a difference between 
the two samples.

R calculates Fexp as (sX)2/(sY)2. If we use 
the command

var.test(penny2, penny1)

the output will give R as 0.534 and the 
95% confidence interval as 0.0858 to 
4.912. Because the expected value for 
Fexp of 1.00 falls within the confidence 
interval, we retain the null hypothesis of 
equal variances.

Figure 4.25 Output of an R session for an F-test of variances. The p-value of 0.5661 is the probability of incor-
rectly rejecting the null hypothesis that the variances are equal (note: R identifies the value a as a p-value). The 
95% confidence interval is the range of values for Fexp that can be explained by random error. If this range in-
cludes the expected value for F, in this case 1.00, then there is insufficient evidence to reject the null hypothesis. 
Note that R does not adjust for significant figures.

To complete a one-sided t-test, include 
the command

alternative = “greater”

or

alternative = “less”

A one-sided paired t-test that the differ-
ence between two samples is greater than 
0 becomes

t.test(X, Y, paired = TRUE, alternative = 
“greater”)

> var.test(penny1, penny2)
 F test to compare two variances
data:  penny1 and penny2 
F = 1.8726, num df = 6, denom df = 4, p-value = 0.5661
alternative hypothesis: true ratio of variances is not equal to 1 
95 percent confidence interval:
  0.2036028 11.6609726 
sample estimates:
ratio of variances 
          1.872598



128 Analytical Chemistry 2.0

Unlike Excel, R also includes functions for evaluating outliers. These 
functions are not part of R’s standard installation. To install them enter the 
following command within R (note: you will need an internet connection to 
download the package of functions).

> install.packages(“outliers”)
After installing the package, you will need to load the functions into R using 
the following command (note: you will need to do this step each time you begin 
a new R session as the package does not automatically load when you start R).

> library(“outliers”)
Let’s use this package to find the outlier in Table 4.16 using  both 

Dixon’s Q-test and Grubb’s test. The commands for these tests are

dixon.test(X, type = 10, two.sided = TRUE)

grubbs.test(X, type = 10, two.sided = TRUE)

where X is the object containing the data, “type = 10” specifies that we 
are looking for one outlier, and “two.sided=TRUE” indicates that we are 
using the more conservative two-tailed test. Both tests have other variants 
that allow the testing of outliers on both ends of the data set (“type = 11”) 
or for more than one outlier (“type = 20”), but we will not consider these. 
Figure 4.27 shows the output of a session for this problem. For both tests 
the very small p-value indicates that we can treat as an outlier the penny 
with a mass of 2.514 g.

Figure 4.26 Output of an R session for an unpaired t-test with equal variances. The p-value of 0.2116 is the 
probability of incorrectly rejecting the null hypothesis that the means are equal (note: R identifies the value a as 
a p-value). The 95% confidence interval is the range of values for the difference between the means that can be 
explained by random error. If this range includes the expected value for the difference, in this case zero, then 
there is insufficient evidence to reject the null hypothesis. Note that R does not adjust for significant figures.

Practice Exercise 4.13
Rework Example 4.20 and Example 4.21 using R.

Click here to review your answers to this exercise.

You need to install a package once, but 
you need to load the package each time 
you plan to use it. There are ways to con-
figure R so that it automatically loads 
certain packages; see An Introduction to R 
for more information (click here to view a 
PDF version of this document). 

> t.test(penny1, penny2, var.equal=TRUE)
 Two Sample t-test
data:  penny1 and penny2 
t = 1.3345, df = 10, p-value = 0.2116
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -0.02403040  0.09580182 
sample estimates:
mean of x mean of y 
 3.117286  3.081400

http://cran.r-project.org/doc/manuals/R-intro.pdf
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viSualizing data

One of the more useful features of R is the ability to visualize your data. 
Visualizing your data is important because it provides you with an intuitive 
feel for your data that can help you in applying and evaluating statistical 
tests. It is tempting to believe that a statistical analysis is foolproof, particu-
larly if the probability for incorrectly rejecting the null hypothesis is small. 
Looking at a visual display of your data, however, can help you  determine 
whether your data is normally distributed—a requirement for most of the 
significance tests in this chapter—and can help you identify potential out-
liers. There are many useful ways to look at your data, four of which we 
consider here.

To plot data in R will use the package “lattice,” which you will need to 
load using the following command.

> library(“lattice”)
To demonstrate the types of plots we can generate, we will use the object 
“penny,” which contains the masses of the 100 pennies in Table 4.13.

Our first display is a histogram. To construct the histogram we use 
mass to divide the pennies into bins and plot the number of pennies or the 
percent of pennies in each bin on the y-axis as a function of mass on the 
x-axis. Figure 4.28a shows the result of entering

> histogram(penny, type = “percent”, xlab = “Mass (g)”, 
ylab = “Percent of Pennies”, main = “Histogram of Data in Table 
4.13”)

Figure 4.27 Output of an R session for Dixon’s Q-test and Grubb’s test for outliers. The p-values for both tests 
show that we can treat as an outlier the penny with a mass of 2.514 g.

You can download the file “Penny.Rdata” 
from the textbook’s web site.

To create a histogram showing the num-
ber of pennies in each bin, change “per-
cent” to “count.”

You do not need to use the command in-
stall.package this time because lattice was 
automatically installed on your computer 
when you downloaded R.

Visualizing data is important, a point we 
will return to in Chapter 5 when we con-
sider the mathematical modeling of data.

> penny3=c(3.067,3.049, 3.039, 2.514, 3.048, 3.079, 3.094, 3.109, 3.102)
> dixon.test(penny3, type=10, two.sided=TRUE)

 Dixon test for outliers

data:  penny3 
Q = 0.8824, p-value < 2.2e-16
alternative hypothesis: lowest value 2.514 is an outlier 

> grubbs.test(penny3, type=10, two.sided=TRUE)

 Grubbs test for one outlier

data:  penny3 
G = 2.6430, U = 0.0177, p-value = 1.938e-06
alternative hypothesis: lowest value 2.514 is an outlier
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A histogram allows us to visualize the data’s distribution. In this ex-
ample the data appear to follow a normal distribution, although the larg-
est bin does not include the mean of 3.095 g and the distribution is not 
perfectly symmetric. One limitation of a histogram is that its appearance 
depends on how we choose to bin the data. Increasing the number of bins 
and centering the bins around the data’s mean gives a histogram that more 
closely approximates a normal distribution (Figure 4.10).

An alternative to the histogram is a kernel density plot, which is 
basically a smoothed histogram. In this plot each value in the data set is 
replaced with a normal distribution curve whose width is a function of the 
data set’s standard deviation and size. The resulting curve is a summation 

Figure 4.28 Four different ways to plot the data in Table 4.13: (a) histogram; (b) kernel density plot 
showing smoothed distribution and individual data points; (c) dot chart; and (d) box plot.
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of the individual distributions. Figure 4.28b shows the result of entering 
the command

> densityplot(penny, xlab = “Mass of Pennies (g)”, main = “Kernel 
Density Plot of Data in Table 4.13”) 

The circles at the bottom of the plot show the mass of each penny in the 
data set. This display provides a more convincing picture that the data in 
Table 4.13 are normally distributed, although we can see evidence of a small 
clustering of pennies with a mass of approximately 3.06 g.

We analyze samples to characterize the parent population. To reach a 
meaningful conclusion about a population, the samples must be represen-
tative of the population. One important requirement is that the samples 
must be random. A dot chart provides a simple visual display that allows 
us look for non-random trends. Figure 4.28c shows the result of entering

> dotchart(penny, xlab = “Mass of Pennies (g)”, ylab = “Penny 
Number”, main = “Dotchart of Data in Table 4.13”)

In this plot the masses of the 100 pennies are arranged along the y-axis in 
the order of sampling. If we see a pattern in the data along the y-axis, such 
as a trend toward smaller masses as we move from the first penny to the 
last penny, then we have clear evidence of non-random sampling. Because 
our data do not show a pattern, we have more confidence in the quality of 
our data.

The last plot we will consider is a box plot, which is a useful way to 
identify potential outliers without making any assumptions about the data’s 
distribution. A box plot contains four pieces of information about a data 
set: the median, the middle 50% of the data, the smallest value and the 
largest value within a set distance of the middle 50% of the data, and pos-
sible outliers. Figure 4.28d shows the result of entering

> bwplot(penny, xlab = “Mass of Pennies (g)”, main = “Boxplot of 
Data in Table 4.13)”

The black dot (•) is the data set’s median. The  rectangular box shows the 
range of masses for the middle 50% of the pennies. This also is known as the 
interquartile range, or IQR. The dashed lines, which are called “whiskers,” 
extend to the smallest value and the largest value that are within ±1.5×IQR 
of the rectangular box. Potential outliers are shown as open circles (º). For 
normally distributed data the median will be near the center of the box and 
the whiskers will be equidistant from the box. As is often true in statistics, 
the converse is not true—finding that a boxplot is perfectly symmetric does 
not prove that the data are normally distributed. 

The box plot in Figure 4.28d is consistent with the histogram (Figure 
4.28a) and the kernel density plot  (Figure 4.28b). Together, the three plots  
provide evidence that the data in Table 4.13 are normally distributed. The 
potential outlier, whose mass of 3.198 g, is not sufficiently far away from 
the upper whisker to be of concern, particularly as the size of the data set 

To find the interquartile range you first 
find the median, which divides the data 
in half. The median of each half provides 
the limits for the box. The IQR is the me-
dian of the upper half of the data minus 
the median for the lower half of the data. 
For the data in Table 4.13 the median is 
3.098. The median for the lower half of 
the data is 3.068 and the median for the 
upper half of the data is 3.115. The IQR 
is 3.115 – 3.068 = 0.047. You can use the 
command “summary(penny)” in R to ob-
tain these values. 

The  lower “whisker” extend to the first 
data point with a mass larger than 

3.068 – 1.5 × IQR = 3.068 – 1.5 × 0.047 
= 2.9975

which for this data is 2.998 g. The upper 
“whisker” extends to the last data point 
with a mass smaller than 

3.115+1.5×IQR = 3.115 + 1.5×0.047 = 
3.1855

which for this data is 3.181 g.

Note that the dispersion of points along 
the x-axis is not uniform, with more 
points occurring near the center of the x-
axis than at either end. This pattern is as 
expected for a normal distribution.
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(n = 100) is so large. A Grubb’s test on the potential outlier does not pro-
vide evidence for treating it as an outlier.

4I Key Terms
alternative hypothesis bias binomial distribution
box plot central limit theorem Chauvenet’s criterion
confidence interval constant determinate error degrees of freedom
detection limit determinate error Dixon’s Q-test
dot chart error F-test
Grubb’s test histogram indeterminate error
kernel density plot limit of identification limit of quantitation
mean median measurement error
method error normal distribution null hypothesis
one-tailed significance test outlier paired data
paired t-test personal error population
probability distribution propagation of uncertainty proportional determinate error
range repeatability reproducibility
sample sampling error significance test
standard deviation standard error of the mean Standard Reference Material
tolerance t-test two-tailed significance test
type 1 error type 2 error uncertainty

unpaired data variance

4J Chapter Summary
The data we collect are characterized by their central tendency (where the 
values cluster), and their spread (the variation of individual values around 
the central value). We report our data’s central tendency by stating the mean 
or median, and our data’s spread using the range, standard deviation or 
variance. Our collection of data is subject to errors, including determinate 
errors that affect the data’s accuracy, and indeterminate errors affecting its 

Practice Exercise 4.14
Use R to create a data set consisting of 100 values from a uniform distri-
bution by entering the command

> data = runif(100, min = 0, max = 100)
A uniform distribution is one in which every value between the mini-
mum and the maximum is equally probable. Examine the data set by 
creating a histogram, a kernel density plot, a dot chart, and a box plot. 
Briefly comment on what the plots tell you about the your sample and 
its parent population.

Click here to review your answer to this exercise.

As you review this chapter, try to define  a 
key term in your own words. Check your 
answer by clicking on the key term, which 
will take you to the page where it was first 
introduced. Clicking on the key term 
there, will bring you back to this page so 
that you can continue with another key 
term.
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precision. A propagation of uncertainty allows us to estimate how these 
determinate and indeterminate errors will affect our results.

When we analyze a sample several times the distribution of the results 
is described by a probability distribution, two examples of which are the 
binomial distribution and the normal distribution. Knowing the type of 
distribution allows us to determine the probability of obtaining a particular 
range of results. For a normal distribution we express this range as a con-
fidence interval.

A statistical analysis allows us to determine whether our results are sig-
nificantly different from known values, or from values obtained by other 
analysts, by other methods of analysis, or for other samples. We can use a 
t-test to compare mean values and an F-test to compare precisions. To com-
pare two sets of data you must first determine whether the data is paired or 
unpaired. For unpaired data you must also decide if the standard deviations 
can be pooled. A decision about whether to retain an outlying value can 
be made using Dixon’s Q-test, Grubb’s test, or Chauvenet’s criterion. You 
should be sure to exercise caution when deciding to reject an outlier.

Finally, the detection limit is a statistical statement about the smallest 
amount of analyte that we can detect with confidence. A detection limit is 
not exact since its value depends on how willing we are to falsely report the 
analyte’s presence or absence in a sample. When reporting a detection limit 
you should clearly indicate how you arrived at its value.

4K Problems

1. The following masses were recorded for 12 different U.S. quarters (all 
given in grams):

5.683 5.549 5.548 5.552
5.620 5.536 5.539 5.684
5.551 5.552 5.554 5.632

 Report the mean, median, range, standard deviation and variance for 
this data.

2. A determination of acetaminophen in 10 separate tablets of Excedrin 
Extra Strength Pain Reliever  gives the following results (in mg).16

224.3 240.4 246.3 239.4 253.1
261.7 229.4 255.5 235.5 249.7

 (a) Report the mean, median, range, standard deviation and variance 
for this data. (b) Assuming that X  and s2 are good approximations for 
μ and s2, and that the population is normally distributed, what per-

16 Simonian, M. H.; Dinh, S.; Fray, L. A. Spectroscopy 1993, 8(6), 37–47.

Many of the problems that follow require ac-
cess to statistical tables. For your convenience, 
here are hyperlinks to the appendices containing 
these tables. 

Appendix 3: Single-Sided Normal Distribution

Appendix 4: Critical Values for the t-Test

Appendix 5: Critical Values for the F-Test

Appendix 6: Critical Values for Dixon’s Q-Test

Appendix 7: Critical Values for Grubb’s Test
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centage of tablets contain more than the standard amount of 250 mg 
acetaminophen per tablet?

3. Salem and Galan developed a new method for determining the amount 
of morphine hydrochloride in tablets.17 An analysis of tablets with dif-
ferent nominal dosages gave the following results (in mg/tablet).

100-mg tablets 60-mg tablets 30-mg tablets 10-mg tablets
99.17 54.21 28.51 9.06
94.31 55.62 26.25 8.83
95.92 57.40 25.92 9.08
94.55 57.51 28.62
93.83 52.59 24.93

 (a) For each dosage, calculate the mean and standard deviation for the 
mg of morphine hydrochloride per tablet. (b) For each dosage level, 
assuming that X  and s2 are good approximations for μ and s2, and 
that the population is normally distributed, what percentage of tablets 
contain more than the nominal amount of morphine hydrochloride per 
tablet?

4. Daskalakis and co-workers evaluated several procedures for digesting 
oyster and mussel tissue prior to analyzing them for silver.18 To evalu-
ate the procedures they spiked samples with known amounts of silver 
and analyzed the samples to determine the amount of silver, reporting 
results as the percentage of added silver found in the analysis. A proce-
dure was judged acceptable is the spike recoveries fell within the range 
100±15%. The spike recoveries for one method are shown here.

106% 108% 92% 99%
101% 93% 93% 104%

 Assuming a normal distribution for the spike recoveries, what is the 
probability that any single spike recovery will be within the accepted 
range?

5. The formula weight (FW) of a gas can be determined using the follow-
ing form of the ideal gas law

FW
g T
PV

=
R

 where g is the mass in grams, R is the gas constant, T is the temperature 
in Kelvin, P is the pressure in atmospheres, and V is the volume in liters. 

17 Salem, I. I.; Galan, A. C. Anal. Chim. Acta 1993, 283, 334–337.
18 Daskalakis, K. D.; O’Connor, T. P.; Crecelius, E. A. Environ. Sci. Technol. 1997, 31, 2303–

2306.

See Chapter 15 to learn more about using 
a spike recovery to evaluate an analytical 
method.

Many of the problems that follow require ac-
cess to statistical tables. For your convenience, 
here are hyperlinks to the appendices containing 
these tables.  

Appendix 3: Single-Sided Normal Distribution

Appendix 4: Critical Values for the t-Test

Appendix 5: Critical Values for the F-Test

Appendix 6: Critical Values for Dixon’s Q-Test

Appendix 7: Critical Values for Grubb’s Test
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In a typical analysis the following data are obtained (with estimated 
uncertainties in parentheses)

g = 0.118 g (± 0.002 g)

R = 0.082056 L atm mol–1 K–1 (± 0.000001 L atm mol–1 K–1)

T = 298.2 K (± 0.1 K)

P = 0.724 atm (± 0.005 atm)

V = 0.250 L (± 0.005 L)

 (a) What is the compound’s formula weight and its estimated uncer-
tainty? (b) To which variable(s) should you direct your attention if you 
wish to improve the uncertainty in the compound’s molecular weight?

6. To prepare a standard solution of Mn2+ a 0.250 g sample of Mn is dis-
solved in 10 mL of concentrated HNO3 (measured with a graduated 
cylinder). The resulting solution is quantitatively transferred to a 100-
mL volumetric flask and diluted to volume with distilled water. A 10 
mL aliquot of the solution is pipeted into a 500-mL volumetric flask 
and diluted to volume. (a) Express the concentration of Mn in mg/L, 
and estimate its uncertainty using a propagation of uncertainty. (b) 
Can you improve the concentration’s uncertainty by using a pipet to 
measure the HNO3, instead of a graduated cylinder?

7. The mass of a hygroscopic compound is measured using the technique 
of weighing by difference. In this technique the compound is placed in 
a sealed container and weighed. A portion of the compound is removed, 
and the container and the remaining material are reweighed. The dif-
ference between the two masses gives the sample’s mass. A solution of 
a hygroscopic compound with a gram formula weight of 121.34 g/mol 
(±0.01 g/mol) was prepared in the following manner. A sample of the 
compound and its container has a mass of 23.5811 grams. A portion 
of the compound was transferred to a 100-mL volumetric flask and 
diluted to volume. The mass of the compound and container after the 
transfer is 22.1559 grams. Calculate the compound’s molarity and es-
timate its uncertainty by a propagation of uncertainty.

8. Show using a propagation of uncertainty that the standard error of the 
mean for n determinations is s n .

9. Beginning with equation 4.17 and equation 4.18, use a propagation of 
uncertainty to derive equation 4.19.

10. What is the smallest mass that we can measure on an analytical balance 
that has a tolerance of ±0.1 mg, if the relative error must be less than 
0.1%?

Many of the problems that follow require ac-
cess to statistical tables. For your convenience, 
here are hyperlinks to the appendices containing 
these tables. 

Appendix 3: Single-Sided Normal Distribution

Appendix 4: Critical Values for the t-Test

Appendix 5: Critical Values for the F-Test

Appendix 6: Critical Values for Dixon’s Q-Test

Appendix 7: Critical Values for Grubb’s Test
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11. Which of the following is the best way to dispense 100.0 mL of a re-
agent: (a) use a 50-mL pipet twice; (b) use a 25-mL pipet four times; 
or (c) use a 10-mL pipet ten times?

12. You can dilute a solution by a factor of 200 using readily available pipets 
(1-mL to 100-mL) and volumetric flasks (10-mL to 1000-mL) in either 
one step, two steps, or three steps. Limiting yourself to the glassware 
in Table 4.2, determine the proper combination of glassware to ac-
complish each dilution, and rank them in order of their most probable 
uncertainties.

13. Explain why changing all values in a data set by a constant amount will 
change X  but will have no effect on s.

14. Obtain a sample of a metal from your instructor and determine its 
density by one or both of the following methods:

 Method A: Determine the sample’s mass with a balance. Calculate the 
sample’s volume using appropriate linear dimensions.

 Method B: Determine the sample’s mass with a balance. Calculate the 
sample’s volume by measuring the amount of water that it displaces. 
This can be done by adding water to a graduated cylinder, reading the 
volume, adding the sample, and reading the new volume. The differ-
ence in volumes is equal to the sample’s volume.

 Determine the density at least 5 times. (a) Report the mean, the stan-
dard deviation, and the 95% confidence interval for your results. (b) 
Find the accepted value for the metal’s density and determine the ab-
solute and relative error for your determination of the metal’s density. 
(c) Use a propagation of uncertainty to determine the uncertainty for 
your method of analysis. Is the result of this calculation consistent with 
your experimental results? If not, suggest some possible reasons for this 
disagreement.

15. How many carbon atoms must a molecule have if the mean number 
of 13C atoms per molecule is 1.00? What percentage of such molecules 
will have no atoms of 13C?

16. In Example 4.10 we determined the probability that a molecule of 
cholesterol, C27H44O, had no atoms of 13C. (a) Calculate the prob-
ability that a molecule of cholesterol, has 1 atom of 13C. (b) What is the 
probability that a molecule of cholesterol will have two or more atoms 
of 13C?

17. Berglund and Wichardt investigated the quantitative determination 
of Cr in high-alloy steels using a potentiometric titration of Cr(VI)19. 

19 Berglund, B.; Wichardt, C. Anal. Chim. Acta 1990, 236, 399–410.

Many of the problems that follow require ac-
cess to statistical tables. For your convenience, 
here are hyperlinks to the appendices containing 
these tables. 

Appendix 3: Single-Sided Normal Distribution

Appendix 4: Critical Values for the t-Test

Appendix 5: Critical Values for the F-Test

Appendix 6: Critical Values for Dixon’s Q-Test

Appendix 7: Critical Values for Grubb’s Test
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Before the titration, samples of the steel were dissolved in acid and the 
chromium oxidized to Cr(VI) using peroxydisulfate. Shown here are 
the results ( as %w/w Cr) for the analysis of a reference steel.

16.968 16.922 16.840 16.883
16.887 16.977 16.857 16.728

 Calculate the mean, the standard deviation, and the 95% confidence 
interval about the mean. What does this confidence interval mean?

18. Ketkar and co-workers developed an analytical method for determining 
trace levels of atmospheric gases.20 An analysis of a sample containing 
40.0 parts per thousand (ppt) 2-chloroethylsulfide yielded the follow-
ing results

43.3 34.8 31.9
37.8 34.4 31.9
42.1 33.6 35.3

 (a) Determine whether there is a significant difference between the 
experimental mean and the expected value at a = 0.05. (b) As part of 
this study a reagent blank was analyzed 12 times, giving a mean of 0.16 
ppt and a standard deviation of 1.20 ppt. What are the IUPAC detec-
tion limit, the limit of identification, and limit of quantitation for this 
method assuming a = 0.05?

19. To test a spectrophotometer’s accuracy a solution of 60.06 ppm K2Cr2O7 
in 5.0 mM H2SO4 is prepared and analyzed. This solution has an ex-
pected absorbance of 0.640 at 350.0 nm in a 1.0-cm cell when using 
5.0 mM H2SO4 as a reagent blank. Several aliquots of the solution 
produce the following absorbance values.

0.639  0.638 0.640 0.639 0.640 0.639 0.638
  Determine whether there is a significant difference between the experi-

mental mean and the expected value at a = 0.01.

20. Monna and co-workers used radioactive isotopes to date sediments 
from lakes and estuaries.21 To verify this method they analyzed a 208Po 
standard known to have an activity of 77.5 decays/min, obtaining the 
following results.

77.09 75.37 72.42 76.84 77.84 76.69
78.03 74.96 77.54 76.09 81.12 75.75

 Determine whether there is a significant difference between the mean 
and the expected value at a = 0.05.

20 Ketkar, S. N.; Dulak, J. G.; Dheandhanou, S.; Fite, W. L. Anal. Chim. Acta 1996, 330, 267–
270.

21 Monna, F.; Mathieu, D.; Marques, A. N.; Lancelot, J.; Bernat, M. Anal. Chim. Acta 1996, 330, 
107–116.
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21. A 2.6540-g sample of an iron ore, known to be 53.51% w/w Fe, is dis-
solved in a small portion of concentrated HCl and diluted to volume in 
a 250-mL volumetric flask. A spectrophotometric determination of the 
concentration of Fe in this solution yields results of 5840, 5770, 5650, 
and 5660 ppm. Determine whether there is a significant difference 
between the experimental mean and the expected value at a = 0.05.

22. Horvat and co-workers used atomic absorption spectroscopy to deter-
mine the concentration of Hg in coal fly ash.22 Of particular interest 
to the authors was developing an appropriate procedure for digesting 
samples and releasing the Hg for analysis. As part of their study they 
tested several reagents for digesting samples. Results obtained using 
HNO3 and using a 1 + 3 mixture of HNO3 and HCl are shown here. 
All concentrations are given as ng Hg/g sample.

HNO3 161 165 160 167 166
1+3 HNO3–HCl 159 145 140 147 143 156

 Determine whether there is a significant difference between these meth-
ods at a = 0.05.

23. Lord Rayleigh, John William Strutt (1842-1919), was one of the most 
well known scientists of the late nineteenth and early twentieth centu-
ries, publishing over 440 papers and receiving the Nobel Prize in 1904 
for the discovery of argon. An important turning point in Rayleigh’s 
discovery of Ar was his experimental measurements of the density of N2. 
Rayleigh approached this experiment in two ways: first by taking at-
mospheric air and removing all O2 and H2; and second, by chemically 
producing N2 by decomposing nitrogen containing compounds (NO, 
N2O, and NH4NO3) and again removing all O2 and H2. Following are 
his results for the density of N2, published in Proc. Roy. Soc. 1894, LV, 
340 (publication 210) (all values are for grams of gas at an equivalent 
volume, pressure, and temperature).23

Atmospheric 
Origin:

2.310 17 2.309 86 2.310 10 2.310 01
2.310 24 2.310 10 2.310 28

Chemical 
Origin:

2.301 43 2.298 90 2.298 16 2.301 82
2.298 69 2.299 40 2.298 49 2.298 89

 Explain why this data led Rayleigh to look for, and discover Ar.

24. Gács and Ferraroli reported a method for monitoring the concentration 
of SO2 in air.24 They compared their method to the standard method by 
analyzing urban air samples collected from a single location. Samples 
were collected by drawing air through a collection solution for 6 min. 

22 Horvat, M.; Lupsina, V.; Pihlar, B. Anal. Chim. Acta 1991, 243, 71–79.
23 Larsen, R. D. J. Chem. Educ. 1990, 67, 925–928.
24 Gács, I.; Ferraroli, R. Anal. Chim. Acta 1992, 269, 177 –185.
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Shown here is a summary of their results with SO2 concentrations 
reported in μL/m3.

standard 
method:

21.62 22.20 24.27 23.54
24.25 23.09 21.02

new 
method:

21.54 20.51 22.31 21.30
24.62 25.72 21.54

 Using an appropriate statistical test determine whether there is any sig-
nificant difference between the standard method and the new method 
at a = 0.05.

25. One way to check the accuracy of a spectrophotometer is to measure 
absorbencies for a series of standard dichromate solutions obtained 
from the National Institute of Standards and Technology. Absorben-
cies are measured at 257 nm and compared to the accepted values. The 
results obtained when testing a newly purchased spectrophotometer are 
shown here. Determine if the tested spectrophotometer is accurate at 
a = 0.05. 

Standard Measured Absorbance Expected Absorbance
1 0.2872 0.2871
2 0.5773 0.5760
3 0.8674 0.8677
4 1.1623 1.1608
5 1.4559 1.4565

26. Maskarinec and co-workers investigated the stability of volatile organics 
in environmental water samples.25 Of particular interest was establish-
ing proper conditions for maintaining the sample’s integrity between its 
collection and analysis. Two preservatives were investigated—ascorbic 
acid and sodium bisulfate—and maximum holding times were deter-
mined for a number of volatile organics and water matrices. The follow-
ing table shows results (in days) for the holding time of nine organic 
compounds in surface water.

Ascorbic Acid Sodium Bisulfate
methylene chloride 77 62
carbon disulfide 23 54
trichloroethane 52 51
benzene 62 42
1,1,2-trichloroethane 57 53
1,1,2,2-tetrachlorethane 33 85
tetrachloroethene 41 63

25 Maxkarinec, M. P.; Johnson, L. H.; Holladay, S. K.; Moody, R. L.; Bayne, C. K.; Jenkins, R. A. 
Environ. Sci. Technol. 1990, 24, 1665–1670.
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toluene 32 94
chlorobenzene 36 86

 Determine whether there is a significant difference in the effectiveness 
of the two preservatives at a = 0.10.

27. Using X-ray diffraction, Karstang and Kvalhein reported a new method 
for determining the weight percent of kalonite in complex clay miner-
als using X-ray diffraction.26 To test the method, nine samples contain-
ing known amounts of kalonite were prepared and analyzed. The results 
(as % w/w kalonite) are shown here.

Actual: 5.0 10.0 20.0 40.0 50.0 60.0 80.0 90.0 95.0
Found: 6.8 11.7 19.8 40.5 53.6 61.7 78.9 91.7 94.7

 Evaluate the accuracy of the method at a = 0.05.

28. Mizutani, Yabuki and Asai developed an electrochemical method for 
analyzing l-malate.27 As part of their study they analyzed a series of 
beverages using both their method and a standard spectrophotometric 
procedure based on a clinical kit purchased from Boerhinger Scientific. 
The following table summarizes their results. All values are in ppm.

Sample Electrode Spectrophotometric
Apple juice 1 34.0 33.4
Apple juice 2 22.6 28.4
Apple juice 3 29.7 29.5
Apple juice 4 24.9 24.8
Grape juice 1 17.8 18.3
Grape juice 2 14.8 15.4
Mixed fruit juice 1 8.6 8.5
Mixed fruit juice 2 31.4 31.9
White wine 1 10.8 11.5
White wine 2 17.3 17.6
White wine 3 15.7 15.4
White wine 4 18.4 18.3

 Determine whether there is a significant difference between the meth-
ods at a = 0.05.

29. Alexiev and colleagues describe an improved photometric method for 
determining Fe3+ based on its ability to catalyze the oxidation of sul-
phanilic acid by KIO4.28 As part of their study the concentration of Fe3+ 

26 Karstang, T. V.; Kvalhein, O. M. Anal. Chem. 1991, 63, 767–772.
27 Mizutani, F.; Yabuki, S.; Asai, M. Anal. Chim. Acta 1991, 245,145–150.
28 Alexiev, A.; Rubino, S.; Deyanova, M.; Stoyanova, A.; Sicilia, D.; Perez Bendito, D. Anal. Chim. 

Acta, 1994, 295, 211–219.
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in human serum samples was determined by the improved method and 
the standard method. The results, with concentrations in μmol/L, are 
shown in the following table.

Sample Improved Method Standard Method
1 8.25 8.06
2 9.75 8.84
3 9.75 8.36
4 9.75 8.73
5 10.75 13.13
6 11.25 13.65
7 13.88 13.85
8 14.25 13.53

 Determine whether there is a significant difference between the two 
methods at a = 0.05.

30. Ten laboratories were asked to determine an analyte’s concentration of 
in three standard test samples. Following are the results, in μg/mL.29

Laboratory Sample 1 Sample 2 Sample 3
1 22.6 13.6 16.0
2 23.0 14.2 15.9
3 21.5 13.9 16.9
4 21.9 13.9 16.9
5 21.3 13.5 16.7
6 22.1 13.5 17.4
7 23.1 13.9 17.5
8 21.7 13.5 16.8
9 22.2 12.9 17.2

10 21.7 13.8 16.7
 Determine if there are any potential outliers in Sample 1, Sample 2 or 

Sample 3 at a significance level of a = 0.05. Use all three methods—
Dixon’s Q-test, Grubb’s test, and Chauvenet’s criterion—and compare 
the results to each other.

31. When copper metal and powdered sulfur are placed in a crucible and 
ignited, the product is a sulfide with an empirical formula of CuxS. The 
value of x can be determined by weighing the Cu and S before ignition, 
and finding the mass of CuxS when the reaction is complete (any excess 
sulfur leaves as SO2). The following table shows the Cu/S ratios from 
62 such experiments.

29 Data adapted from Steiner, E. H. “Planning and Analysis of Results of Collaborative Tests,” in 
Statistical Manual of the Association of Official Analytical Chemists, Association of Official Analyti-
cal Chemists: Washington, D. C., 1975.
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1.764 1.838 1.865 1.866 1.872 1.877
1.890 1.891 1.891 1.897 1.899 1.900
1.906 1.908 1.910 1.911 1.916 1.919
1.920 1.922 1.927 1.931 1.935 1.936
1.936 1.937 1.939 1.939 1.940 1.941
1.941 1.942 1.943 1.948 1.953 1.955
1.957 1.957 1.957 1.959 1.962 1.963
1.963 1.963 1.966 1.968 1.969 1.973
1.975 1.976 1.977 1.981 1.981 1.988
1.993 1.993 1.995 1.995 1.995 2.017
2.029 2.042

 (a) Calculate the mean and standard deviation for this data. (b) 
Construct a histogram for this data. From a visual inspection of 
your histogram, does the data appear to be normally distributed? 
(c) In a normally distributed population 68.26% of all members lie 
within the range μ ± 1s. What percentage of the data lies within 
the range ± 1s? Does this support your answer to the previous ques-
tion? (d) Assuming that X  and s2 are good approximations for μ 
and s2, what percentage of all experimentally determined Cu/S 
ratios will be greater than 2? How does this compare with the ex-
perimental data? Does this support your conclusion about whether 
the data is normally distributed? (e) It has been reported that this 
method of preparing copper sulfide results in a non-stoichiometric 
compound with a Cu/S ratio of less than 2. Determine if the mean 
value for this data is significantly less than 2 at a significance level 
of a = 0.01.

32. Real-time quantitative PCR is an analytical method for determining 
trace amounts of DNA. During the analysis, each cycle doubles the 
amount of DNA. A probe species that fluoresces in the presence of 
DNA is added to the reaction mixture and the increase in fluorescence 
is monitored during the cycling. The cycle threshold, Ct, is the cycle 
when the fluorescence exceeds a threshold value. The data in the follow-
ing table shows Ct values for three samples using real-time quantitative 
PCR.30 Each sample was analyzed 18 times.

Sample X Sample Y Sample Z
24.24 25.14 24.41 28.06 22.97 23.43
23.97 24.57 27.21 27.77 22.93 23.66
24.44 24.49 27.02 28.74 22.95 28.79
24.79 24.68 26.81 28.35 23.12 23.77

30 Burns, M. J.; Nixon, G. J.; Foy, C. A.; Harris, N. BMC Biotechnol. 2005, 5:31 (open access 
publication).
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23.92 24.45 26.64 28.80 23.59 23.98
24.53 24.48 27.63 27.99 23.37 23.56
24.95 24.30 28.42 28.21 24.17 22.80
24.76 24.60 25.16 28.00 23.48 23.29
25.18 24.57 28.53 28.21 23.80 23.86

 Examine this data statistically and write a brief report on your conclu-
sions. Issues you may wish to address include the presence of outliers 
in the samples, a summary of the descriptive statistics for each sample, 
and any evidence for a difference between the samples.

4L Solutions to Practice Exercises
Practice Exercise 4.1
Mean: To find the mean we sum up the individual measurements and di-
vide by the number of measurements.  The sum of the 10 concentrations 
is 1405. Dividing the sum by 10, gives the mean as 140.5, or 1.40×102 

mmol/L.

Median: To find the mean we arrange the 10 measurements from the 
smallest concentration to the largest concentration; thus

118  132  137  140  141  143  143  145  149  157

The median for a data set with 10 members is the average of the fifth and 
sixth values; thus, the median is (141 + 143)/2, or 141 mmol/L.

Range: The range is the difference between the largest value and the small-
est value; thus, the range is 157 – 118 = 39 mmol/L.

Standard Deviation: To calculate the standard deviation we first calculate 
the difference between each measurement and the mean value (140.5), 
square the resulting differences, and add them together. The differences 
are

-0.5   2.5   0.5  -3.5  -8.5  16.5   2.5   8.5 -22.5   4.5

and the squared differences are

0.25   6.25   0.25  12.25  72.25 272.25   6.25  72.25 506.25  20.25

The total sum of squares, which is the numerator of equation 4.1, is 
968.50. The standard deviation is

s =
−

= ≈
968 50
10 1

10 37 10 4
.

. .

Variance: The variance is the square of the standard deviation, or 108.
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Click here to return to the chapter.

Practice Exercise 4.2
The first step is to determine the concentration of Cu2+ in the final solu-
tion. The mass of copper is

74.2991 g – 73.3216 g = 0.9775 g Cu

The 10 mL of HNO3 used to dissolve the copper does not factor into our 
calculation. The concentration of Cu2+ is

0 9775
0 5000

1 000
250 0

103.
.

.
.

g Cu
L

mL
mL

mg
× ×

gg
mg Cu /L2+= 7 820.

Having found the concentration of Cu2+ we continue on to complete the 
propagation of uncertainty. The absolute uncertainty in the mass of Cu 
wire is

ug Cu g= + =( . ) ( . ) .0 0001 0 0001 0 000142 2

The relative uncertainty in the concentration of Cu2+ is

7.820 mg/L

u m g /L
=

0 . 9775
0 . 00014e o

2

+
500 . 0
0 . 20e o

2

+
1 . 000
0 . 006d n

2

+
250 . 0
0 . 12e o

2

= 0 . 00603

Solving for umg/L gives the uncertainty as 0.0472. The concentration and 
uncertainty for Cu2+ is 7.820 mg/L ± 0.047 mg/L.

Click here to return to the chapter.

Practice Exercise 4.3
The first step is to calculate the absorbance, which is

A
P
P

=− =−
×
×

log log
.
.o

1 50 10
3 80 10

2

=− = ≈log( . ) . .0 3947 0 4037 0 404

Having found the absorbance we continue on to complete the propaga-
tion of uncertainty. First, we find the uncertainty for the ratio P/Po.

P Po

uP/Po =
3 . 80 # 102

15e o
2

+
1 . 50 # 102

15e o
2

= 1 . 075 # 10-2

Finally, from Table 4.10 the uncertainty in the absorbance is

u
u

P PA
P P= × = × × =−0 4343 0 4343 1 075 10 42. ( . ) ( . ) ./ o

o

6669 10 3× −

The absorbance and uncertainty is 0.404 ± 0.005 absorbance units.
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Click here to return to the chapter.

Practice Exercise 4.4
An uncertainty of 0.8% is a relative uncertainty in the concentration of 
0.008; thus

.
.

. u
0 008

23 41
0 028

0.186
k

2 2

A= +e eo o

Squaring both sides of the equation gives

.
.

. u
6 4 10

23 41
0 028

0.186
k5

2 2

A# = +- e eo o

.
u

6 257 10
0.186

k5

2

A# =- e o

Sovling for ukA gives its value as 1.47×10–3, or ±0.0015 ppm–1.

Click here to return to the chapter.

Practice Exercise 4.5
To find the percentage of tablets containing less than 245 mg of aspirin 
we calculate the deviation, z,

z =
−

=−
245 250

5
1 00.

and look up the corresponding probability in Appendix 3A, obtaining a 
value of 15.87%. To find the percentage of tablets containing less than 
240 mg of aspirin we find that

z =
−

=−
240 250

5
2 00.

which corresponds to 2.28%. The percentage of tablets containing be-
tween 240 and 245 mg of aspiring is 15.87% – 2.28% = 13.59%.

Click here to return to the chapter.

Practice Exercise 4.6
The mean is 249.9 mg aspirin/tablet for this sample of seven tablets. For 
a 95% confidence interval the value of z is 1.96. The confidence interval 
is
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249 9 249 9 3 7 250. . .±
×

= ± ≈ ±
1.96 5

7
mg 4 mg

Click here to return to the chapter.

Practice Exercise 4.7
With 100 pennies, we have 99 degrees of freedom for the mean. Although 
Table 4.15 does not include a value for t(0.05, 99), we can approximate 
its value using the values for t(0.05, 60) and t(0.05, 100) and assuming a 
linear change in its value.

t t t t( . , ) ( . , ) ( . , (0 05 0 05
39
40

0 05 099 60 60)= − − .. ,

( . , ) . . .

05

0 05 2 000
39
40

2 000 1 9

100)

99

{ }

= − −t 884 1 9844{ }= .

The 95% confidence interval for the pennies is

3 095
1 9844 0 0346

100
3 095.

. .
.±

×
= ±g 0.007 g

From Example 4.15, the 95% confidence intervals for the two samples in 
Table 4.11 are 3.117 g ± 0.047 g and 3.081 g ± 0.046 g. As expected, the 
confidence interval for the sample of 100 pennies is much smaller than 
that for the two smaller samples of pennies. Note, as well, that the con-
fidence interval for the larger sample fits within the confidence intervals 
for the two smaller samples.

Click here to return to the chapter.

Practice Exercise 4.8

The null hypothesis is H X0 : = µ and the alternative hypothesis is
H XA : ≠ µ .The mean and standard deviation for the data are 99.26% 
and 2.35%, respectively. The value for texp is

texp

. .

.
.=

−
=

100 0 99 26 7

2 35
0 833

and the critical value for t(0.05, 6) is 0.836. Because texp is less than 
t(0.05, 6) we retain the null hypothesis and have no evidence for a signifi-
cant difference between X and μ.

Click here to return to the chapter.
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Practice Exercise 4.9
The standard deviations for Lot 1 is 6.451 mg, and 7.849 mg for Lot 2. 
The null and alternative hypotheses are

H s s0 : Lot 1
2

Lot 2
2=        H s sA Lot 1

2
Lot 2
2: ≠

and the value of Fexp is

Fexp

( . )
( . )

.= =
7 849
6 451

1 480
2

2

The critical value for F(0.05, 5, 6) is 5.988. Because Fexp < F(0.05, 5, 6), 
we retain the null hypothesis. There is no evidence at a = 0.05 to suggest 
that the difference in the variances is significant.

Click here to return to the chapter.

Practice Exercise 4.10
To compare the means for the two lots, we will use an unpaired t-test 
of the null hypothesis H X X0 : Lot 1 Lot 2= and the alternative hypothesis
H X XA Lot 1 Lot 2: ≠ . Because there is no evidence suggesting a difference 
in the variances (see Practice Exercise 4.9) we pool the standard deviations, 
obtaining an spool of

s pool =
− + −

+ −
=

( )( . ) ( )( . )
.

7 1 6 451 6 1 7 849
7 6 2

7 12
2 2

11

The means for the two samples are 249.57 mg for Lot 1 and 249.00 mg 
for Lot 2. The value for texp is

texp

. .

.
.=

−
×

×
+

=
249 57 249 00

7 121
7 6
7 6

0 1439

The critical value for t(0.05, 11) is 2.204. Because texp is less than t(0.05, 
11), we retain the null hypothesis and find no evidence at a = 0.05 for 
a significant difference between the means for the two lots of aspirin 
tablets.

Click here to return to the chapter.

Practice Exercise 4.11
Treating as Unpaired Data: The mean and standard deviation for the con-
centration of Zn2+ at the air-water interface are 0.5178 mg/L and 0.1732 
mg/L respectively, and the values for the sediment-water interface are 
0.4445 mg/L and 0.1418 mg/L.  An F-test of the variances gives an Fexp of 
1.493 and an F(0.05, 5, 5) of 7.146. Because Fexp is smaller than F(0.05, 
5,5) we have no evidence at a = 0.05 to suggest that the difference in vari-
ances is significant. Pooling the standard deviations gives an spool of 0.1582 
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mg/L. An unpaired t-test gives texp as 0.8025. Because texp is smaller than 
t(0.05, 11), which is 2.204, we have no evidence that there is a difference 
in the concentration of Zn2+ between the two interfaces.

Treating as Paired Data: To treat as paired data we need to calculate the 
difference, di, between the concentration of Zn2+ at the air-water interface 
and at the sediment-water interface for each location.

di i i
=( ) −( )[Zn ] [Zn ]2+

air-water
2+

sed-water

Location 1 2 3 4 5 6
di (mg/L) 0.015 0.028 0.067 0.121 0.102 0.107

The mean difference is 0.07333 mg/L with a standard deviation of 0.0441 
mg/L. The null hypothesis and alternative hypothesis are

H d0 0: =        H dA : ≠ 0

and the value of texp is

texp

.

.
.= =

0 07333 6

0 04410
4 073

Because texp is greater than t(0.05, 5), which is 2.571, we reject the null 
hypothesis and accept the alternative hypothesis that there is a significant 
difference in the concentration of Zn2+ between the air-water interface 
and the sediment-water interface.

The difference in the concentration of Zn2+ between locations is much 
larger than the difference in the concentration of Zn2+ between the inter-
faces. Because out interest is in studying differences between the interfaces, 
the larger standard deviation when treating the data as unpaired increases 
the probability of incorrectly retaining the null hypothesis, a type 2 er-
ror.

Click here to return to the chapter.

Practice Exercise 4.12
You will find small differences between the values given here for texp and 
Fexp, and for those values shown with the worked solutions in the chapter. 
These differences arise because Excel does not round off the results of 
intermediate calculations.

The two snapshots of Excel spreadsheets shown in Figure 4.29 provide 
solutions to these two examples.

Click here to return to the chapter.
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Practice Exercise 4.13
Shown here are copies of R sessions for each problem. You will find small 
differences between the values given here for texp and Fexp, and for those 
values shown with the worked solutions in the chapter. These differences 
arise because R does not round off the results of intermediate calcula-
tions.

Example 4.20

> AnalystA=c(86.82, 87.04, 86.93, 87.01, 86.20, 87.00)
> AnalystB=c(81.01, 86.15, 81.73, 83.19, 80.27, 83.94)
> var.test(AnalystB, AnalystA)

 F test to compare two variances

data:  AnalystB and AnalystA 
F = 45.6358, num df = 5, denom df = 5, p-value = 0.0007148
alternative hypothesis: true ratio of variances is not equal to 1 
95 percent confidence interval:
   6.385863 326.130970 
sample estimates:
ratio of variances 
          45.63582 

> t.test(AnalystA, AnalystB, var.equal=FALSE)

Analyst A Analyst B
86.82 81.01
87.04 86.15
86.93 81.73
87.01 83.19
86.20 80.27
87.00 83.94

F-Test Two-Sample for Variances

Analyst B Analyst A
Mean 82.715 86.8333333
Variance 4.67615 0.10246667
Observations 6 6
df 5 5
F 45.6358165
P(F<=f) one-tail 0.0003574
F Critical one-tail 5.05032906

t-Test: Two-Sample Assuming Unequal Variances

Analyst A Analyst B
Mean 86.8333333 82.715
Variance 0.10246667 4.67615
Observations 6 6
Hypothesized Mean Difference 0
df 5
t Stat 4.6147271
P(T<=t) one-tail 0.00288143
t Critical one-tail 2.01504837
P(T<=t) two-tail 0.00576286
t Critical two-tail 2.57058183

Example 4.20 Microbiological Electrochemical
129.5 132.3
89.6 91.0
76.6 73.6
52.2 58.2

110.8 104.2
50.4 49.9
72.4 82.1

141.4 154.1
75.0 73.4
34.1 38.1
60.3 60.1

t-Test: Paired Two Sample for Means

Microbiological Electrochemical
Mean 81.11818182 83.36363636
Variance 1148.547636 1243.008545
Observations 11 11
Pearson Correlation 0.987510302
Hypothesized Mean Difference 0
df 10
t Stat -1.322463865
P(T<=t) one-tail 0.107730346
t Critical one-tail 1.812461102
P(T<=t) two-tail 0.215460691
t Critical two-tail 2.228138842

Example 4.21

Figure 4.29 Excel’s output for the data in Practice Exercise 4.12.
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 Welch Two Sample t-test

data:  AnalystA and AnalystB 
t = 4.6147, df = 5.219, p-value = 0.005177
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 1.852919 6.383748 
sample estimates:
mean of x mean of y 
 86.83333  82.71500

Example 4.21

> micro=c(129.5, 89.6, 76.6, 52.2, 110.8, 50.4, 72.4, 141.4, 75.0, 34.1, 
60.3)
> elect=c(132.3, 91.0, 73.6, 58.2, 104.2, 49.9, 82.1, 154.1, 73.4, 38.1, 
60.1)
> t.test(micro,elect,paired=TRUE)

 Paired t-test

data:  micro and elect 
t = -1.3225, df = 10, p-value = 0.2155
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -6.028684  1.537775 
sample estimates:
mean of the differences 
              -2.245455 

Click here to return to the chapter.

Practice Exercise 4.14
Because we are selecting a random sample of 100 members from a uni-
form distribution, you will see subtle differences between your plots and 
the plots shown as part of this answer. Here is a record of my R session 
and the resulting plots.

> data=runif(100, min=0, max=0)
> data
  [1] 18.928795 80.423589 39.399693 23.757624 30.088554
  [6] 76.622174 36.487084 62.186771 81.115515 15.726404
 [11] 85.765317 53.994179  7.919424 10.125832 93.153308
 [16] 38.079322 70.268597 49.879331 73.115203 99.329723
 [21] 48.203305 33.093579 73.410984 75.128703 98.682127
 [26] 11.433861 53.337359 81.705906 95.444703 96.843476
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 [31] 68.251721 40.567993 32.761695 74.635385 70.914957
 [36] 96.054750 28.448719 88.580214 95.059215 20.316015
 [41]  9.828515 44.172774 99.648405 85.593858 82.745774
 [46] 54.963426 65.563743 87.820985 17.791443 26.417481
 [51] 72.832037  5.518637 58.231329 10.213343 40.581266
 [56]  6.584000 81.261052 48.534478 51.830513 17.214508
 [61] 31.232099 60.545307 19.197450 60.485374 50.414960
 [66] 88.908862 68.939084 92.515781 72.414388 83.195206
 [71] 74.783176 10.643619 41.775788 20.464247 14.547841
 [76] 89.887518 56.217573 77.606742 26.956787 29.641171
 [81] 97.624246 46.406271 15.906540 23.007485 17.715668
 [86] 84.652814 29.379712  4.093279 46.213753 57.963604
 [91] 91.160366 34.278918 88.352789 93.004412 31.055807
 [96] 47.822329 24.052306 95.498610 21.089686  2.629948
> histogram(data, type=”percent”)
> densityplot(data)
> dotchart(data)
> bwplot(data)
Figure 4.30 shows the four plots. The histogram divides the data into eight 
bins, each containing between 10 and 15 members. As we expect for a 
uniform distribution, the histogram’s overall pattern suggests that each 
outcome is equally probable. In interpreting the kernel density plot it is 
important to remember that it treats each data point as if it is from a nor-
mally distributed population (even though, in this case, the underlying 
population is uniform). Although the plot appears to suggest that there 
are two normally distributed populations, the individual results shown at 
the bottom of the plot provide further evidence for a uniform distribution. 
The dot chart shows no trend along the y-axis, indicating that the indi-
vidual members of this sample were drawn randomly from the population. 
The distribution along the x-axis also shows no pattern, as expected for a 
uniform distribution, Finally, the box plot shows no evidence of outliers.

Click here to return to the chapter.
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Figure 4.30 Plots generated using 
R to solve Practice Exercise 4.13.
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