## Practice Exercise 8.3

A sample of a silicate rock that weighs 0.8143 g is brought into solution and treated to yield a $0.2692-\mathrm{g}$ mixture of NaCl and KCl . The mixture of chloride salts is dissolved in a mixture of ethanol and water, and treated with $\mathrm{HClO}_{4}$, precipitating 0.3314 g of $\mathrm{KClO}_{4}$. What is the $\% \mathrm{w} / \mathrm{w} \mathrm{Na}_{2} \mathrm{O}$ in the silicate rock?

## Solution to Practice Exercise 8.3

The mass of the two solids provides us with the following set of equations

$$
\begin{gathered}
\mathrm{g} \mathrm{NaCl}+\mathrm{g} \mathrm{KCl}=0.2692 \mathrm{~g} \\
\mathrm{~g} \mathrm{KClO}_{4}=0.3314 \mathrm{~g}
\end{gathered}
$$

With two equations and three unknowns-g $\mathrm{NaCl}, \mathrm{g} \mathrm{KCl}$, and $\mathrm{g} \mathrm{KClO}_{4}$-we need one additional equation to solve the problem. A conservation of mass requires that all the potassium originally in the KCl ends up in the $\mathrm{KClO}_{4}$; thus

$$
\mathrm{g} \mathrm{KClO}_{4}=\mathrm{g} \mathrm{KCl} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{74.55 \mathrm{~g} \mathrm{KCl}} \times \frac{138.55 \mathrm{~g} \mathrm{KClO}_{4}}{\mathrm{~mol} \mathrm{Cl}}=1.8585 \times \mathrm{g} \mathrm{KCl}
$$

Given the mass of $\mathrm{KClO}_{4}$, we use the third equation to solve for the mass of KCl in the mixture of chloride salts

$$
\mathrm{g} \mathrm{KCl}=\frac{\mathrm{g} \mathrm{KClO}_{4}}{1.8585}=\frac{0.3314 \mathrm{~g}}{1.8585}=0.1783 \mathrm{~g} \mathrm{KCl}
$$

Tha mass of NaCl in the mixture of chloride salts, therefore, is

$$
\mathrm{g} \mathrm{NaCl}=0.2692 \mathrm{~g}-\mathrm{g} \mathrm{KCl}=0.2692 \mathrm{~g}-0.1783 \mathrm{~g} \mathrm{KCl}=0.0909 \mathrm{~g} \mathrm{NaCl}
$$

Finally, to report the $\% \mathrm{w} / \mathrm{w} \mathrm{Na}_{2} \mathrm{O}$ in the sample, we use a conservation of mass on sodium to determine the mass of $\mathrm{Na}_{2} \mathrm{O}$

$$
0.0909 \mathrm{~g} \mathrm{NaCl} \times \frac{1 \mathrm{~mol} \mathrm{Na}}{58.44 \mathrm{~g} \mathrm{NaCl}} \times \frac{61.98 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{Na}}=0.0482 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}
$$

giving the $\% \mathrm{w} / \mathrm{w} \mathrm{Na}_{2} \mathrm{O}$ as

$$
\frac{0.0482 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}}{0.8143 \mathrm{~g} \text { sample }} \times 100=5.92 \% \mathrm{w} / \mathrm{w}_{\mathrm{Na}}^{2} \mathrm{O}
$$

