Example 2.10

A sample of an ore was analyzed for Cu^{2+} as follows. A 1.25-gram sample of the ore was dissolved in acid and diluted to volume in a $250-\mathrm{mL}$ volumetric flask. A $20-\mathrm{mL}$ portion of the resulting solution was transferred by pipet to a $50-\mathrm{mL}$ volumetric flask and diluted to volume. An analysis of this solution gives the concentration of Cu^{2+} as $4.62 \mu \mathrm{~g} / \mathrm{mL}$. What is the weight percent of Cu in the original ore?

Solution

Substituting known volumes (with significant figures appropriate for pipets and volumetric flasks) into equation 2.2

$$
\left(C_{\mathrm{Cu}}\right)_{\mathrm{o}} \times 20.00 \mathrm{~mL}=4.62 \mu \mathrm{~g} / \mathrm{mL} \mathrm{Cu}^{2+} \times 50.00 \mathrm{~mL}
$$

and solving for $\left(C_{\mathrm{Cu}}\right)_{\mathrm{o}}$ gives the original concentration as $11.55 \mu \mathrm{~g} / \mathrm{mL} \mathrm{Cu}^{2+}$. To calculate the grams of Cu^{2+} we multiply by the total volume

$$
\frac{11.55 \mu \mathrm{~g} \mathrm{Cu}^{2+}}{\mathrm{mL}} \times 250.0 \mathrm{~mL} \times \frac{1 \mathrm{~g}}{10^{6} \mu \mathrm{~g}}=2.888 \times 10^{-3} \mathrm{~g} \mathrm{Cu}^{2+}
$$

The weight percent Cu is

$$
\frac{2.888 \times 10^{-3} \mathrm{~g} \mathrm{Cu}^{2+}}{1.25 \mathrm{~g} \text { sample }} \times 100=0.231 \% \mathrm{w} / \mathrm{w} \mathrm{Cu}^{2+}
$$

